Mathematics 1823-030
Examination I Form B
September 21, 2009

Name (please print)

Student Number

(1) Discussion Section (circle day and time):

Th 9:00 Th 1:30 Th 3:00 F 8:30 \quad F 9:30 \quad F 2:30
I. The table to the right shows the values of two func-
(4) tions f and g at the x-values $0,1,2,3$, and 4 . For example, $f(1)=0$ and $g(1)=3$. Write the value of each of the following:

x	0	1	2	3	4
$f(x)$	4	0	3	2	1
$g(x)$	2	3	0	4	1

$$
(g \circ f)(3)=\underline{0} \quad(f \circ g)(3)=1 \quad(f \cdot f)(3)=4 \quad(f \circ f)(3)=
$$

II. In the blank to the left of each of the following questions, write the letter of the best response.
(12)

1. \quad E Let $f: \mathbb{R} \rightarrow \mathbb{R}$ (i. e. let f be a function from the real numbers to the real numbers). What type of mathematical object is the graph of f ?
A) number
B) function
C) codomain
D) equation
E) set
F) velocity
2. A What type of mathematical object is $\lim _{x \rightarrow 2} \sin ^{3}(x)$?
A) number
B) function
C) codomain
D) equation
E) set
F) velocity

The next two questions refer to the figure to the right. It shows a window consisting of four panes, three of which are squares and one of which is a quarter of a disk. The width of the entire window is x.

3. E Which of the following is an expression for the perimeter of the window as a function of x ?
A) $6 x+\pi x / 2$
B) $3 x+\pi x / 2$
C) $2 x+\pi x / 2$
D) $6 x+\pi x / 4$
E) $3 x+\pi x / 4$
F) $2 x+\pi x / 4$
G) $6 x+\pi x^{2} / 2$
H) $3 x+\pi x^{2} / 2$
I) $2 x+\pi x^{2} / 2$
J) $6 x+\pi x^{2} / 4$
K) $3 x+\pi x^{2} / 4$
L) $2 x+\pi x^{2} / 4$
4. L Which of the following is an expression for the area of the window as a function of x ?
A) $3 x^{2}+\pi x^{2}$
B) $3 x^{2}+\pi x^{2} / 2$
C) $3 x^{2}+\pi x^{2} / 4$
D) $3 x^{2}+\pi x^{2} / 16$
E) $3 x^{2} / 2+\pi x^{2}$
F) $3 x^{2} / 2+\pi x^{2} / 2$
G) $3 x^{2} / 2+\pi x^{2} / 4$
H) $3 x^{2} / 2+\pi x^{2} / 16$
I) $3 x^{2} / 4+\pi x^{2}$
J) $3 x^{2} / 4+\pi x^{2} / 2$
K) $3 x^{2} / 4+\pi x^{2} / 4$
L) $3 x^{2} / 4+\pi x^{2} / 16$
III. The figure to the right shows the graph of a certain func(4) tion $f:[-2,4] \rightarrow \mathbb{R}$. On the coordinate system shown below, sketch the graph of the reciprocal function $\frac{1}{f(x)}$. Make the y-values reasonably accurate, based on the values of $f(x)$.

IV. On the coordinate system shown below, sketch the graph of a function f that satisfies all of the following: (5) $\quad \lim _{x \rightarrow-1} f(x)=-\infty, \lim _{x \rightarrow 1^{-}} f(x)=-1, \lim _{x \rightarrow 1^{+}} f(x)=0$, and $\lim _{x \rightarrow 3} f(x)$ exists but f is not continuous at $x=3$.

V. Use completing the square and translation to graph the function $y=x^{2}+4 x+5$.
(4)

$$
x^{2}+4 x+5=\left(x^{2}+4 x+4\right)+5-4=(x+2)^{2}+1
$$

VI. The figure to the right shows a portion of the graph of the function (5) $\quad f(x)=\frac{1}{x}$. It also shows the tangent line at the point $(1,1)$, and a typical secant line.
(a) One of the endpoints of the secant line is $(1,1)$. Give the coordinates of the other endpoint in terms of h.

$$
\left(1+h, \frac{1}{1+h}\right)
$$

(b) Calculate the slope of the secant line as a function m_{h} of h.

$$
m_{h}=\frac{\frac{1}{1+h}-1}{(1+h)-1}=\frac{\frac{1}{1+h}-\frac{1+h}{1+h}}{h}=\frac{-h}{h(1+h)}
$$

(c) Evaluate the limit $\lim _{h \rightarrow 0} m_{h}$ to find the slope $m_{\tan }$ of the tangent line at $(1,1)$.

$$
m_{\text {tan }}=\lim _{h \rightarrow 0} m_{h}=\lim _{h \rightarrow 0} \frac{-h}{h(1+h)}=\lim _{h \rightarrow 0} \frac{-h}{h} \frac{1}{1+h}=(-1) \frac{1}{1+0}=-1
$$

VII. Determine the following limits (not by plugging in values, and not by using l'Hôpital's rule).
(8)

1. $\lim _{h \rightarrow 1} \frac{\sqrt{h+3}-2}{h-1}$

$$
\begin{aligned}
{\left[\lim _{h \rightarrow 1} \frac{\sqrt{h+3}-2}{h-1}\right.} & =\lim _{h \rightarrow 1} \frac{\sqrt{h+3}-2}{h-1} \frac{\sqrt{h+3}+2}{\sqrt{h+3}+2}=\lim _{h \rightarrow 1} \frac{(h+3)-4}{h-1} \frac{1}{\sqrt{h+3}+2} \\
& =\lim _{h \rightarrow 1} \frac{h-1}{h-1} \frac{1}{\sqrt{h+3}+2}=1 \cdot \frac{1}{\sqrt{1+3}+2}=\frac{1}{4}
\end{aligned}
$$

2. $\lim _{x \rightarrow 3^{-}} \frac{5-x}{x-3}$

For x near 3 and a little less than 3, the numerator is close to 2 and the denominator is a very small negative number, so the quotient is a large negative number. Therefore

$$
\lim _{x \rightarrow 3^{-}} \frac{5-x}{x-3}=-\infty
$$

VIII. State the precise, formal (i. e. using ϵ and δ) definition of: $\lim _{x \rightarrow \pi / 3} \sin (x)=\sqrt{3} / 2$.

For every $\epsilon>0$, there exists $\delta>0$ such that if $0<|x-\pi / 3|<\delta$, then $|\sin (x)-\sqrt{3} / 2|<\epsilon$.
IX. Define what it means to say that a function f is continuous at x_{0}. State the Intermediate Value Theorem. (5)
f is continuous at x_{0} when f is defined at $x_{0}, \lim _{x \rightarrow x_{0}} f(x)$ exists, and $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
The Intermediate Value Theorem says that if f is a continous function on the closed interval $[a, b]$, and N is any number between $f(a)$ and $f(b)$, then there exists a c between a and b such that $f(c)=N$.

