I. Let \(p: (\tilde{X}, \tilde{x}) \to (X, x) \) be a covering map, and let \(\alpha \) be a loop in \(X \) based at \(x \). Let \(\tilde{\alpha} \) be the lift of \(\alpha \) starting at \(\tilde{x} \). Prove that \(\tilde{\alpha} \) is a loop if and only if \([\alpha] \in p_\#(\pi_1(\tilde{X}, \tilde{x})) \).

II. Recall the proof that a path-connected, locally path-connected, semilocally simply connected space \(X \) has a simply-connected covering space \(\tilde{X} \). Tell how the points of \(\tilde{X} \) are defined, how the covering map \(p: \tilde{X} \to X \) is defined, and how the basic open sets in its topology are defined. You do not need to give any more details about the proof.

III. Define the following: \(\Delta^n \), a singular \(n \)-simplex, \(C_n(X) \), \(C_n(X, A) \), a chain map, \(f_\# \), \(f_* \). Show how the fact that \(f_\# \) is a chain map proves that \(f_* \) is well-defined.

IV. State the Homotopy Extension Property. Use the fact that a subcomplex of a CW-complex has the HEP to prove the following proposition: Let \(A \) be a subcomplex of a CW-complex \(X \). Suppose that \(f: A \to Y \) is a continuous map that extends to a continuous map \(F: X \to Y \). Suppose further that \(f \simeq g \). Then \(g \) extends to a continuous map \(G: X \to Y \).

V. The figure to the right shows a certain covering space of the one-point union of two circles \(a \) and \(b \).

(i) Label \(a \) and \(b \) with single and double arrows. Make a corresponding labeling of the covering space that indicates a particular covering map.

(ii) Here is a sloppy way to state the Lifting Criterion: Let \(p: \tilde{X} \to X \) be a covering map, and let \(f: Y \to X \) be a continuous map. Then \(f \) lifts to a map \(F: Y \to \tilde{X} \) with \(pF = f \) if and only if \(f_\#(\pi_1(Y)) \subseteq p_\#(\pi_1(\tilde{X})) \). Give a precise statement of the Lifting Criterion, taking basepoints into account.

(iii) Use the example of a covering map given in part (i) to explain why basepoints must be taken into account in stating the Lifting Criterion.

VI. Recall that the cone on a space \(A \) is the quotient space \(CA = (A \times I)/(A \times \{1\}) \). Let \(A \subset X \), with \(A \) and \(X \) path-connected, and consider the quotient space \(Y = X \cup CA \) obtained from \(X \) and \(CA \) by identifying each \((a, 0) \in CA \) with \(a \in A \subset X \). Let \(P \) be the cone point \([A \times \{1\}] \). Observe that \(CA - (A \times \{0\}) \) is contractible, and \(Y - P \) deformation retracts to \(X \) (you do not need to give any argument, except drawing reasonable pictures). Use van Kampen’s Theorem to give a description of \(\pi_1(Y, y_0) \) at a basepoint \(y_0 \) in \(A \times (0,1) \). (You can be a bit informal, but try to stay close to the statement of van Kampen’s Theorem.)
VII. The figure to the right shows a Δ-structure on a Möbius band X; the right and left sides of the square are identified as indicated to form the band. The Δ-structure has four 2-simplices, seven 1-simplices, and three 0-simplices. The top and bottom horizontal 1-simplices t and b form the boundary circle in X. The middle horizontal 1-simplex m has its endpoints identified and forms the “core circle” C of X. Orient t, m, and b from left to right. It is easy to check that X deformation retracts to C (you do not need to prove this), so that the inclusion i_*: $H_k(C) \to H_k(X)$ is an isomorphism for each k.

(i) The core circle C has a Δ-structure with one 1-simplex m and one 0-simplex v. Use this to calculate the homology of C. Since X deformation retracts to C, the inclusion $C \to X$ is an isomorphism on homology groups.

(ii) The boundary circle D of M has a Δ-structure with two 1-simplices t and b and two 0-simplices x and y, the left and right endpoints of t. Use this Δ-structure to calculate the homology of D.

(iii) Label orientations on the four 2-simplices τ_1, τ_2, τ_3, and τ_4 and on t, m, and b so that the 2-chain $c = \tau_1 + \tau_2 + \tau_3 + \tau_4$ has $\partial c = t + b - 2m$.

(iv) Use the chain in part (iii) (even if you did not find it explicitly) to explain why the inclusion j: $D \to X$ carries a generator of $H_1(D)$ to $2[m] \in H_1(X)$.

(v) Deduce that X does not retract to D.

VIII. Let F and G be chain maps from the chain complex $\cdots \to A_{n+1} \xrightarrow{\partial} A_n \xrightarrow{\partial} A_{n-1} \to \cdots$ to the chain complex $\cdots \to B_{n+1} \xrightarrow{\partial} B_n \xrightarrow{\partial} B_{n-1} \to \cdots$. Define a chain homotopy from F to G. Verify that if P is a chain homotopy from F to G, then $F_*=G_*$: $H_n(A) \to H_n(B)$.

IX. Consider a commutative diagram of abelian groups and homomorphisms:

(i) Prove that if α and γ are injective, then so is β.

(ii) Prove that if α and γ are surjective, then so is β.

X. Let X be the one-point union of two circles. For each of the following groups G, display a 4-fold covering space of X with deck transformation group G: $\{1\}$, C_2, $C_2 \times C_2$, C_4 (you do not need to verify that those are the deck transformation groups). Display an infinite-sheeted covering space of X with fundamental group \mathbb{Z}. Again, it is not necessary to verify that it is a covering, but use the single and double arrow method to clarify what the covering map is.