(b) Find an orthonormal basis for \[\langle 3, 1 \rangle. \]

A unit vector in the direction of \((-2, 3)\) is \(\left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right) \), and an orthonormal basis containing this vector is \(\left\{ \left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right), \left(\frac{3}{\sqrt{13}}, \frac{-2}{\sqrt{13}} \right) \right\}. \)

II. The 3 Parallel Reflections Theorem says that if \(\alpha, \beta, \) and \(\gamma \) are three lines perpendicular to a line \(\ell \), then there is a line \(\delta \) perpendicular to \(\ell \) so that \(\Omega_\alpha \Omega_\beta \Omega_\gamma = \Omega_\delta \). Using this theorem, argue that if \(F = \Omega_{\alpha_1} \Omega_{\alpha_2} \cdots \Omega_{\alpha_n} \) is a product of \(n \) reflections in lines perpendicular to \(\ell \), then \(F \) is either a translation (possibly the identity) or a reflection in a line perpendicular to \(\ell \).

If \(n \geq 2 \), then by the 3 Parallel Reflections Theorem, \(\Omega_{\alpha_{n-2}} \Omega_{\alpha_{n-1}} \Omega_{\alpha_n} = \Omega_\delta \) for some line \(\delta \) perpendicular to \(\ell \). Replacing \(\Omega_{\alpha_{n-2}} \Omega_{\alpha_{n-1}} \Omega_{\alpha_n} \) by \(\Omega_\delta \) in the product \(F = \Omega_{\alpha_1} \Omega_{\alpha_2} \cdots \Omega_{\alpha_n} \) gives expression for \(F \) as a product of only \(n-2 \) reflections. Since we can repeat this process as long as there are more than 2 reflections, we will eventually finish with either \(F = \Omega_m \), in which case \(F \) is a reflection, or \(\Omega_m \Omega_n \), in which case \(F \) is a translation (possibly the identity), when \(m = n \) in the direction of \(\ell \).

III. For a point \(P \in \mathbb{R}^2 \), define a function \(H_P \) from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) by \(H_P X = 2P - X \).

(a) Verify that \(H_P \) is injective.

Suppose \(H_P X = H_P Y \). Then \(2P - X = 2P - Y \), so \(-X = -Y \) and therefore \(X = Y \).

(b) Verify that \(H_P^2 \) is the identity function of \(\mathbb{R}^2 \).

For all \(X \), \(H_P^2 X = H_P(H_P X) = H_P(2P - X) = 2P - (2P - X) = X. \)

(c) Verify (algebraically) that \(H_P H_Q = \tau_{2(P-Q)} \), where \(\tau_v X = X + v. \)

For all \(X \), \(H_P H_Q X = H_P(2Q - X) = 2P - (2Q - X) = X + 2(P - Q) = \tau_{2(P-Q)}X. \)

IV. Let \(\ell = P + [v] = (3, 2) + [(1, -2)]. \)

(a) Find a unit normal \(N \) to \(\ell \).

A unit direction vector for \(\ell \) is \(\left(\frac{1}{\sqrt{3}}, \frac{-2}{\sqrt{3}} \right) \), so a unit normal is \(N = \left(\frac{1}{\sqrt{3}}, \frac{-2}{\sqrt{3}} \right) = \left(\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right). \)

(b) By rewriting the equation \(\langle X - P, N \rangle = 0 \) in \(xy \)-coordinates, obtain an \(xy \)-equation for the line \(\ell \).

Writing \(X = (x, y) \), we have
\[
0 = \langle (x, y) - (3, 2), (\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \rangle = \langle (x-3, y-2), (\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \rangle = \frac{2}{\sqrt{3}}(x-3) + \frac{1}{\sqrt{3}}(y-2),
\]
which may also be written as \(2(x-3) + (y-2) = 0 \) or \(2x + y = 8 \).
V. (a) Define what it means to say that a function \(f \) is an isometry of \(\mathbb{R}^2 \).

It means that for all \(X, Y \in \mathbb{R}^2 \), \(d(fX, fY) = d(x, y) \).

(b) Prove that if \(f \) and \(g \) are isometries of \(\mathbb{R}^2 \), then their composition \(fg \) is also an isometry.

For all \(X, Y \in \mathbb{R}^2 \), \(d(fgX, fgY) = d(gX, gY) = d(X, Y) \), where the first equality uses the fact that \(f \) is an isometry, and the second uses the fact that \(g \) is an isometry.

(c) It is a fact that when \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) is an isometry, it has an inverse function \(f^{-1} : \mathbb{R}^2 \to \mathbb{R}^2 \) for which \(f f^{-1} = id \) and \(f^{-1} f = id \). Prove that if \(f \) is an isometry, then \(f^{-1} \) is also an isometry. Hint: Use the fact that \(f(f^{-1}X) = X \).

For all \(X, Y \in \mathbb{R}^2 \), we have \(d(X, Y) = d(f(f^{-1}X), f(f^{-1}Y)) = d(f^{-1}X, f^{-1}Y) \), where the last step uses the fact that \(f \) is an isometry.

VI. Let \(TR(\ell) \) be the group of translations in the direction of \(\ell \). That is, if \(\ell = P + [v] \), and \(\tau_\lambda \) denotes the isometry of \(\mathbb{R}^2 \) given by \(\tau_\lambda X = X + \lambda v \), then \(TR(\ell) = \{ \tau_\lambda \ | \ \lambda \in \mathbb{R} \} \). Prove that the function \(\Phi : \mathbb{R} \to TR(\ell) \) defined by \(\Phi(\lambda) = \tau_\lambda \) satisfies the homomorphism property \(\Phi(\lambda_1 + \lambda_2) = \Phi(\lambda_1)\Phi(\lambda_2) \) (you do not need to show that \(\Phi \) is injective or surjective).

For all \(X \), we have

\[
\Phi(\lambda_1 + \lambda_2)X = \tau_{\lambda_1+\lambda_2}X = X + (\lambda_1 + \lambda_2)v = X + \lambda_1 v + \lambda_2 v \\
= \tau_{\lambda_1}(X + \lambda_2 v) = \tau_{\lambda_1}\tau_{\lambda_2}X = \Phi(\lambda_1)\Phi(\lambda_2)X
\]

VII. (a) Let \(H \) be a subgroup of a group \(G \). Define a coset of \(H \) in \(G \).

A coset of \(H \) in \(G \) is a subset of \(G \) of the form \(Hg = \{ hg \ | h \in H \} \).

(b) Let \(\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, 3, \ldots \} \) be the group of integers, with the operation of addition, and let \(4\mathbb{Z} \) be its subgroup \(\{ \ldots, -4, 0, 4, 8, \ldots \} \). Explain briefly how it is that \(4\mathbb{Z} + 2 = 4\mathbb{Z} + 6 \).

When we add 2 to each element of \(4\mathbb{Z} \), we get

\[
4\mathbb{Z} + 2 = \{ \ldots, -8 + 2, -4 + 2, 0 + 2, 4 + 2, 8 + 2, \ldots \} = \{ \ldots, -6, -2, 2, 6, 10, \ldots \}.
\]

When we add 6 to each element of \(4\mathbb{Z} \), we get

\[
4\mathbb{Z} + 6 = \{ \ldots, -8 + 6, -4 + 6, 0 + 6, 4 + 6, 8 + 6, \ldots \} = \{ \ldots, -2, 2, 6, 10, 14, \ldots \}.
\]

which equals \(4\mathbb{Z} + 2 \).

(c) List all the cosets of \(4\mathbb{Z} \) in \(\mathbb{Z} \).

The cosets are

\[
4\mathbb{Z} + 0 = \{ \ldots, -4, 0, 4, 8, \ldots \}
\]

\[
4\mathbb{Z} + 1 = \{ \ldots, -3, 1, 5, 9, \ldots \}
\]

\[
4\mathbb{Z} + 2 = \{ \ldots, -2, 2, 6, 10, \ldots \}
\]

\[
4\mathbb{Z} + 3 = \{ \ldots, -1, 3, 7, 11, \ldots \}
\]

(Once we get to \(4\mathbb{Z} + 4 = \{ \ldots, 0, 4, 8, 12, \ldots \} = 4\mathbb{Z} \), every coset equals one of these four, \(4\mathbb{Z}, 4\mathbb{Z} + 1, 4\mathbb{Z} + 2, \) or \(4\mathbb{Z} + 3 \). Also \(4\mathbb{Z} + (-1) = 4\mathbb{Z} + 3, 4\mathbb{Z} + (-2) = 4\mathbb{Z} + 2, \) and so on for the cosets \(4\mathbb{Z} + n \) with \(n < 0 \). So there are exactly these four cosets.)
VIII. Let P be a point in \mathbb{R}^2.

(6) Define what it means to say that an isometry R is a rotation about P.

It means that $R = \Omega_\alpha \Omega_\beta$ where α and β are two lines that contain P.

(b) Let α be a line passing through P. Let α_0 be the line through the origin 0 parallel to α, and let τ_P be the translation defined by $\tau_P X = X + P$. Verify by calculation that $\Omega_\alpha = \tau_P \Omega_{\alpha_0} \tau_{-P}$. Hint: Since α_0 passes through the origin, we have $\Omega_{\alpha_0} X = X - 2\langle X, N \rangle N$, where N is a unit normal to α.

\[
\tau_P \Omega_{\alpha_0} \tau_{-P} X = \tau_P \Omega_{\alpha_0} (X - P) = \tau_P (X - P - 2\langle X - P - 0, N \rangle N) = X - P - 2\langle X - P - 0, N \rangle N + P = X - 2\langle X - P, N \rangle N = \Omega_\alpha X
\]

IX. Use direct computation with the formula for $\Omega_\alpha X$ to show that if α_0 is a line through the origin, with unit normal vector N, then $\Omega_{\alpha_0} (X + Y) = \Omega_{\alpha_0} (X) + \Omega_{\alpha_0} (Y)$ for all X and Y in \mathbb{R}^2.

Taking $P = 0$ as our point on α_0, we have $\Omega_{\alpha_0} X = X - 2\langle X, N \rangle N$, so

\[
\Omega_{\alpha_0} (X + Y) = X + Y - 2\langle X + Y, N \rangle N = X + \langle X, N \rangle N + Y + \langle Y, N \rangle N = \Omega_{\alpha_0} (X) + \Omega_{\alpha_0} (Y).
\]

X. (a) Define what it means to say that an isometry J of \mathbb{R}^2 is a glide-reflection.

A glide-reflection is a reflection followed by a translation along its fixed line. (Alternatively, one can define it to be an isometry of the form $\tau_v \Omega_\ell$, where τ_v is a translation in the direction of ℓ.)

(b) Show that the composition of two glide reflections along the same line ℓ is a translation in the direction of ℓ (you may use the fact that Ω_ℓ commutes with any translation in the direction of ℓ).

Let $\tau_v \Omega_\ell$ and $\tau_w \Omega_\ell$ be two glide reflections along ℓ. Then $\tau_v \Omega_\ell \tau_w \Omega_\ell = \tau_v \tau_w \Omega_\ell \Omega_\ell = \tau_{v + w}$. Since v and w are both vectors in the direction of ℓ, so is $v + w$, so $\tau_{v + w}$ is a translation in the direction of ℓ.

XI. (Work on this one only if you are not short on time.) The figure to the right shows two perpendicular lines α and β that meet at the point P, and unit normal vectors N and N^\perp to α and β. Calculate that $\Omega_\alpha \Omega_\beta X = 2P - X$ for all $X \in \mathbb{R}^2$.

We have for all X that

$$\Omega_\alpha \Omega_\beta X = \Omega_\alpha (X - 2\langle X - P, N^\perp \rangle N^\perp)$$

$$= X - 2\langle X - P, N^\perp \rangle N^\perp - 2\langle X - 2(X - P, N^\perp)N^\perp - P, N \rangle N$$

$$= X - 2\langle X - P, N^\perp \rangle N^\perp - 2\langle X - P, N \rangle N - 2\langle -2(X - P, N^\perp)N^\perp, N \rangle N$$

$$= X - 2\langle X - P, N^\perp \rangle N^\perp - 2\langle X - P, N \rangle N + 4\langle X - P, N^\perp \rangle \langle N^\perp, N \rangle N$$

$$= X - 2\langle X - P, N^\perp \rangle N^\perp - 2\langle X - P, N \rangle N = X - 2(X - P) = 2P - X$$