Mathematics 4513-001 Name (please print)
Examination I

October 16, 2008
Instructions: Give brief, clear answers. If asked for a definition, give the definition that we have used in this
course. In some of the problems, you will need to calculate using the formula Q,X = X —2(X — P, N)N.

I (a) Use the Orthonormal Basis Theorem to express the vector (3,1) as a linear combination of the vectors
(6) in the orthonormal basis {(%,2), (-2, 2)}.

B = (3D, (DD + (3.1, (31 = B D 22, H =3, ) - (1.3)

(b) Find an orthonormal basis for R?, one of whose vectors is proportional to the vector (—2,3).

(SIS

A unit vector in the direction of (— ,3) (\;—%, \/%), and an orthonomal basis containing this vector is

(2. 2. (2 ) = (B 4. (G2, 2).

1I. The 3 Parallel Reflections Theorem says that if «, 3, and ~ are three lines perpendicular to a line £,

(5) then there is a line § perpendicular to £ so that ©,30, = (5. Using this theorem, argue that if F' =
Qa,Qay - Qq,, is a product of n reflections in lines perpendicular to ¢, then F' is either a translation
(possibly the identity) or a reflection in a line perpendicular to £.

If n > 2, then by the 3 Parallel Reflections Theorem, Q,, ,€,, 4, = s for some line § perpendic-
ular to £. Replacing Q,,, ,€q, 80, by €s in the product F' = Q4,,Q, - - - 4, gives expression for F
as a product of only n — 2 reflections. Since we can repeat this process as long as there are more than
2 reflections, we will eventually finish with either F' = €,,, in which case F' is a reflection, or §2,,{2,,
in which case F' is a translation (possibly the identity, when m = n) in the direction of /.

III.  For a point P € R?, define a function Hp from R? to R? by HpX = 2P — X.
(6)
(a) Verify that Hp is injective.

Suppose HpX = HpY. Then 2P — X =2P — Y, so —X = —Y and therefore X =Y.
(b) Verify that H% is the identity function of R?.
For all X, H2X = Hp(HpX) = Hp(2P — X) = 2P — (2P — X) = X.
(c) Verify (algebraically) that HpHg = To(p_q), where 7, X = X + v.
For all X, HpHoX = Hp(2Q — X) = 2P — (2Q — X) = X +2(P — Q) = Ty(p_g) X.
IV. Letl{=P+[v]=(3,2)+[(1,-2)].
(6)
(a) Find a unit normal N to /.
A unit direction vector for ¢ is (%, \_/—%), so a unit normal is N = (%, \_/—%)J- = (%, %)
(b) By rewriting the equation (X — P, N) = 0 in zy-coordinates, obtain an xy-equation for the line ¢.

Writing X = (z,y), we have
0= {(@9) — (3:2). (&, 1)) = (& — 3.y — 2), (&
which may also be written as 2(x —3) + (y —2) =0 or 2
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V. (a) Define what it means to say that a function f is an isometry of R2.

6
(©) It means that for all X,Y € R? d(fX, fY) = d(z,y).

(b) Prove that if f and g are isometries of R?, then their composition fg is also an isometry.

For all X,Y € R2, d(fgX, fgY) = d(gX,gY) = d(X,Y), where the first equality uses the fact that f is
an isometry, and the second uses the fact that g is an isometry.

(c) Tt is a fact that when f: R? — R? is an isometry of R?, it has an inverse function f~!: R? — R? for which
ff~' =id and f~'f =id. Prove that if f is an isometry, then f~! is also an isometry. Hint: Use the fact
that f(f1X) = X.

For all X,Y € R?, we have d(X,Y) = d(f(f'X), f(f~'Y)) = d(f~'X, f~1Y), where the last step uses
the fact that f is an isometry.

VI.  Let TR(¢) be the group of translations in the direction of ¢. That is, if £ = P + [v], and 7, denotes the

(5) isometry of R? given by 7\ X = X + Av, then TR({) = {7 | A € R}. Prove that the function ®: R — TR(¢)
defined by ®(\) = 7, satisfies the homomorphism property ®(A; + A2) = ®(A1)P®(A2) (you do not need to
show that ® is injective or surjective).

For all X, we have

DA+ 22)X =To40,X =X+ (M1 +X)v =X+ Mo+ Ao
= T)\l(X + )\Q’U) = T)\IT)\QX = (I)()\l)q)()\g)X

VII. (a) Let H be a subgroup of a group G. Define a coset of H in G.

6
(©) A coset of H in G is a subset of G of the form Hg = {hg | h € H}.

(b) Let Z=1{...,-2,-1,0,1,2,3,...} be the group of integers, with the operation of addition, and let 4Z be its
subgroup {...,—4,0,4,8,...}. Explain briefly how it is that 4Z + 2 = 47 + 6.

When we add 2 to each element of 4Z, we get
Z+2={...,-8+2,-4+20+2,4+2,8+2,...} ={...,-6,-2,2,6,10,...} .
When we add 6 to each element of 4Z, we get
4Z+6=4...,-8+6,-4+6,0+6,44+6,84+6,...} ={...,-2,2,6,10,14,...} .
which equals 47 + 2.
(c) List all the cosets of 47Z in Z.

The cosets are

AZ+0=1{..  —4,0,48,. ..}
AZ+1=1{...,-3,1,5,9,...}
AZ+2=1..,-22610,...}
AZ+3=1{..,-1,3,711,...}
(Once we get to 4Z +4 ={...,0,4,8,12,...} = 47, every coset equals one of these four, 47, 47Z + 1, 47, + 2,

or 4Z + 3. Also 4Z + (—1) = 4Z + 3, 4Z + (—2) = 4Z + 2, and so on for the cosets 4Z + n with n < 0. So
there are exactly these four cosets.)
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VIII. Let P be a point in R2.
(6)

(a) Define what it means to say that an isometry R is a rotation about P.
It means that R = Q2,3 where a and (3 are two lines that contain P.

(b) Let a be a line passing through P. Let ag be the line through the origin 0 parallel to «, and let 7p be the
translation defined by 7p X = X + P. Verify by calculation that Q, = 7pQ,,7_p. Hint: Since oy passes
through the origin, we have Q,, X = X — 2(X, N)N, where N is a unit normal to ag and «a.

7PQayT—pX = 7pQay(X — P) = 7p(X — P —2(X — P — 0, N)N)
=X-P-2(X-P—-0,N)N+P=X—-2(X —P,N)N =Q,X

IX.  Use direct computation with the formula for ,X to show that if ag is a line through the origin, with unit
(6) normal vector N, then Qq (X +Y) = Q4 (X) + Qo (V) for all X and Y in R2.

Taking P = 0 as our point on o, we have Q,, X = X — 2(X, N)N, so

Qoy(X+Y)=X+Y -2(X+Y,N)N
=X+ (X,N)N+Y +(Y,N)N = Qu(X) + Q0 (V) .

X. (a) Define what it means to say that an isometry .J of R? is a glide-reflection.

(5)
A glide-reflection is a reflection followed by a translation along its fixed line. (Alternatively, one can
define it to be an isometry of the form 7,£,, where 7, is a translation in the direction of ¢.)

(b) Show that the composition of two glide reflections along the same line ¢ is a translation in the direction of
¢ (you may use the fact that {2, commutes with any translation in the direction of ¢).

Let 7,82y and 7,£2y be two glide reflections along ¢. Then 7,7,y = T, 7wl = Ty Since v and w
are both vectors in the direction of ¢, so is v + w, S0 Ty, is a translation in the direction of /.

XI.  (Work on this one only if you are not short on time.) The

(6) figure to the right shows two perpendicular lines o and [
that meet at the point P, and unit normal vectors N and
N+t to a and . Calculate that 0,03X = 2P — X for all
X e R2
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We have for all X that

QX = Qo (X —2(X — P,NT)N1)
=X -2(X — P,NY)N*t —2(X —2(X — Pb,N')Nt — P N)N
=X —2(X — P, NNt —2(X — P,N)N —2((-2(X — P, NY)N+ NN
=X —-2(X — P,NY)N* —2(X — P,N)N +4(X — P, N')(N* ,N)N
=X -2(X -PNHNt -2(X —PN)N=X-2(X —P)=2P - X



