
Mathematics 4513-001

Final Examination

December 19, 2008

Name (please print)

Instructions: Give brief, clear answers. If asked for a definition, give the definition that we have used in this
course. In some of the problems, you will need to calculate using the formula ΩℓX = X − 2〈X,P 〉P for reflection
of S2 across the line with pole P .

I.
(6)

(i) Define a line in R
2.

A line is a set of the form P + [v], where P and v are vectors with v 6= 0, and [v] = {λv | λ ∈ R}.

(ii) Using the notation of the definition, write an expression for the line thorough (1, 0) and (3, 5).

For the line through (1, 0) and (3, 5), we can take P = (1, 0) and v = (3, 5) − (1, 0) = (2, 5), so the line
can be written as (1, 0) + [(2, 5)].

(iii) Find a unit normal to the line in (ii).

The direction vector is (2, 5), so a normal vector is (2, 5)⊥ = (−5, 2), and a unit normal is

(−5, 2)

|(−5, 2)| =

(

− 5√
29

,
2√
29

)

.

II.
(5)

Let X be a set with a distance function d : X × X → X. Let f and g be functions from X to X.

(i) Define what it means to say that f is an isometry of X.

f is an isometry when d(f(x), f(y)) = d(x, y) for all x, y ∈ X.

(ii) Prove that if f and g are isometries, then their composition fg is also an isometry.

For all x, y ∈ X, d(fg(x), fg(y)) = d(g(x), g(y)) = d(x, y).

III.
(7)

Recall that for a, b ∈ R
3 we defined the cross product a × b to be the unique vector in R

3 such that
〈a× b, x〉 = det(x, a, b), where det(x, a, b) is the determinant of the matrix whose rows are x, a, and b. Use
this definition to verify the following facts about the cross product. You may use standard properties of
the determinant, and may use the fact that if 〈a, x〉 = 〈b, x〉 for all x, then a = b.

(i) a × b = −b × a

For all x, 〈a × b, x〉 = det(x, a, b) = − det(x, b, a) = −〈b × a, x〉 = 〈−b × a, x〉, so a × b = −b × a.

(ii) 〈a × b, c〉 = 〈a, b × c〉

〈a × b, c〉 = det(c, a, b) = − det(a, c, b) = det(a, b, c) = 〈b × c, a〉 = 〈a, b × c〉.

(iii) If a = (a1, a2, a3) and b = (b1, b2, b3), then a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

For all x = (x1, x2, x3),

〈a × b, x〉 = det















x1 x2 x3

a1 a2 a3

b1 b2 b3















= x1(a2b3 − a3b2) − x2(a1b3 − a3b1) + x3(a1b2 − a2b1)

= 〈(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1), (x1, x2, x3)〉

for all x, so a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).
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IV.
(6)

Recall that a line in S2 with pole P is defined to be the set {X ∈ S2 | 〈X,P 〉 = 0}. Let P and Q be
distinct points in S2 with P 6= −Q.

(i) Give an expression (in terms of P and Q) for a pole of the line ℓ that contains P and Q.

The pole would be a unit vector perpendicular to P and Q, so we can take P × Q/|P × Q|.

(ii) Give an expression (in terms of P and Q) for a pole of the line perpendicular to ℓ that contains Q.

The pole would be perpendicular to the pole P × Q/|P × Q| of ℓ, and hence perpendicular to P × Q,

and would also be perpendicular to Q since the line contains Q. So a pole would be
(P × Q) × Q

|(P × Q) × Q| .

V.
(9)

Let G be the group whose elements are points in the plane R
2, and whose operation is the usual vector

addition, (x1, y1)+ (x2, y2) = (x1 + y1, x2 + y2). Define Φ: G → G by Φ(X) = (3x,−2y), where X = (x, y).
Verify that Φ is an isomorphism (that is, verify that Φ is injective, surjective, and satisfies Φ(X1 + X2) =
Φ(X1) + Φ(X2)).

Injectivity: Suppose that Φ((x1, y1)) = Φ((x2, y2)). Then (3x1,−2y1) = (3x2,−2y2). So 3x1 = 3x2

and −2y1 = −2y2, giving x1 = x2 and y1 = y2. So (x1, y1) = (x2, y2).

Surjectivity: Let (x, y) ∈ G. Then Ψ(x/3,−y/2) = (x, y).

Homomorphism: Φ(X1 + X2) = Φ((x1, y1) + (x2, y2)) = Φ((x1 + x2, y1 + y2))
= (3(x1 + x2),−2(y1 + y2)) = (3x1,−2y1) + (3x2,−2y2) = Φ(X1) + Φ(X2).

VI.
(5)

(i) Calculate the determinants of the matrices rot(θ) and ref(θ).

det(rot(θ)) = det









cos(θ) − sin(θ)

sin(θ) cos(θ)









= cos2(θ) − (− sin2(θ)) = 1

det(ref(θ)) = det









cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)









= − cos2(2θ) − sin2(2θ)) = −1

(ii) Explain geometrically why these are the values one would expect for these determinants.

Both of these linear transformations are isometries, so they preserve area, and therefore their determi-
nants should have absolute value 1. Since rot(θ) preserves the sense but ref(θ) reverses it, we expect
det(rot(θ)) = 1 and det(ref(θ)) = −1.
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VII.
(7)

(i) Give the definitions (in terms of reflections), of a translation and of a rotation of the plane.

A translation in the plane is a composition of two reflections that are perpendicular to a given line ℓ, that
is, a composition of reflections in parallel lines. A rotation in the plane is a composition of two reflections in
lines that meet at a point.

(ii) Explain why these concepts become the same concept when we are working on S2.

In S2, any two lines meet, so in some sense there is no direct analogue of a translation. But two lines
perpendicular to a line ℓ meet in a pole of ℓ, so a product of two reflections in lines perpendicular to ℓ
is a rotation about the pole of ℓ. In this sense, a translation (along ℓ) and a rotation (about a pole of
ℓ) are the same thing.

VIII.
(6)

(i) There is a version of the Three Reflections Theorem for the geometry of S2. Tell what it says.

The Three Reflections Theorem in S2 says that if α, β, and γ are lines meeting at a point P , then there is
a line δ through P such that ΩαΩβΩγ = Ωδ.

(ii) Use the Three Reflections Theorem to show that if α, β, and ℓ are lines in S2 that meet at a point P , then
there is a line m through P so that ΩαΩβ = ΩℓΩm.

By the Three Reflections Theorem, there is a line m through P so that ΩℓΩαΩβ = Ωm. Composing
with Ωℓ on the left, we have ΩαΩβ = Ω2

ℓΩαΩβ = ΩℓΩm.

IX.
(5)

Recall that we define the distance function in S2 by d(X,Y ) = cos−1(〈X,Y 〉). Verify that J is an isometry
of S2 if and only if J preserves the inner product (that is, if and only if 〈JX, JY 〉 = 〈X,Y 〉 for all X and
Y in S2).

We have

d(JX, JY ) = d(X,Y ) ⇐⇒ cos−1(〈JX, JY 〉) = cos−1(〈JX, JY 〉) ⇐⇒ 〈JX, JY 〉 = 〈X,Y 〉 ,

the latter equivalence because cos−1 is a bijective function.
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X.
(6)

Let α, β, and γ be lines in S2 with α and γ both perpendicular to β.

(i) Sketch a picture of these three lines in S2, oriented so that the intersection points of α and γ appear as the
north and south poles.

β
α γ

(ii) Suppose that {e1, e2, e3} is an orthonormal basis for which e3 is an intersection point of α and γ, say the
north pole in part (i). Write the general form of the matrices of Ωα, Ωβ, and Ωγ with respect to this basis
(you do not need to do any calculations, just use your knowledge of how the matrices of these reflections
look for this kind of basis). It is a good idea to write them in block form, so that even though they are 3× 3
matrices, they appear visually as 2 × 2 matrices.

Ωα =









ref(θ)

1









,Ωβ =









I

−1









, and Ωγ =









ref(φ)

1









where I is the 2 × 2 identity matrix.

(iii) By considering the product of the three matrices in part (ii), show that the composition ΩαΩβΩγ is a glide
reflection.

Multiplying the three matrices gives








ref(θ) ref(φ)

−1









=









rot(2(θ − φ))

−1









which is the matrix of a glide reflection. Specifically, it is the product








rot(2(θ − φ))

1

















I

−1









of a rotation about e3 through the angle 2(θ − φ) and a reflection fixing e1 and e2 and sending e3 to
−e3, i. e. the reflection Ωβ.

XI.
(4)

Let {E1, E2, E3} be the standard basis of R
3, and let J be an isometry of S2. Use the Orthonormal Basis

Theorem to express J(X) in terms of E1, E2, and E3.

JX = 〈JX,E1〉E1 + 〈JX,E2〉E2 + 〈JX,E3〉E3

A few people used the fact that isometries of S2 are linear to give another response, which was also
worth full credit:

JX = J(〈X,E1〉E1 + 〈X,E2〉E2 + 〈X,E3〉E3) = 〈X,E1〉JE1 + 〈X,E2〉JE2 + 〈X,E3〉JE3
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XII.
(5)

Let P , Q, and R be points in S2, with P 6= −Q. Explain why P , Q, and R are collinear exactly when
〈R,P × Q〉 = 0.

A pole of the line containing P and Q is
P × Q

|P × Q| . R lies in the line if and only if it is orthogonal to

the pole, that is, if and only if 0 =

〈

R,
P × Q

|P × Q|

〉

=
1

|P × Q| 〈R,P × Q〉. Since |P × Q| is a nonzero

scalar, the latter is equivalent to 〈R,P × Q〉 = 0.

XIII.
(6)

Let G be the group of isometries of S2, and let H be the subgroup of G consisting of the isometries that
take the point (0, 0, 1) to itself, that is, the isometries J of S2 with J((0, 0, 1)) = (0, 0, 1).

(i) Tell what one would need to do to prove that H is not normal in G.

One would need to find an isometry J of S2 with J ∈ H, and another isometry K of S2 so that the
composition KJK−1 is not in H. That is, J(0, 0, 1) = (0, 0, 1) but KJK−1(0, 0, 1) 6= (0, 0, 1).

(ii) Prove that H is not normal in G. There are many ways to do this, here are three (the second and third are
due to students in our class who did this problem, good work!):

Solution 1: Let ℓ be the equator, so ℓ has pole (0, 0, 1), and Ωℓ ∈ H. Let e be the line of points
equidistant from (1, 0, 0) and (0, 0, 1); a pole of e is

(1, 0, 0) − (0, 0, 1)

|(1, 0, 0) − (0, 0, 1)| =

(

1√
2
, 0,− 1√

2

)

.

We know that Ωe interchanges (1, 0, 0) and (0, 0, 1), and Ωℓ fixes every point on the equator ℓ, so we
have

ΩeΩℓΩe(0, 0, 1) = ΩeΩℓ(1, 0, 0) = Ωe(1, 0, 0) = (0, 0, 1)

and therefore ΩeΩℓΩe ∈ H. But

Ωe(ΩeΩℓΩe)Ω
−1

e = Ω2

eΩℓ = Ωℓ ,

and Ωℓ(0, 0, 1) = (0, 0,−1) so Ωℓ /∈ H. Therefore H is not a normal subgroup of G.

Solution 2: Let R be a rotation whose only fixed points are (0, 0,±1), and let m be any line such that
Ωm(0, 0, 1) 6= (0, 0,±1) (that is, any line except the equator). Then R ∈ H. To show that ΩmRΩ−1

m /∈ H,
suppose for contradiction that that ΩmRΩ−1

m ∈ H. Using the fact that Ωm = Ω−1
m , we find

ΩmRΩ−1

m (0, 0, 1) = (0, 0, 1)

Ω−1

m RΩm(0, 0, 1) = (0, 0, 1)

R(Ωm(0, 0, 1)) = Ωm(0, 0, 1)

Therefore Ωm(0, 0, 1) is a fixed point of R, so Ωm(0, 0, 1) = (0, 0,±1), contradicting the choice of m.
This contradiction shows that ΩmRΩ−1

m /∈ H, so H is not a normal subgroup.

Solution 3: Let R be the rotation about (1, 0, 0) that takes (0, 0, 1) to (0, 1, 0) (i. e. rotation by π/2).
Note that R−1(0, 0, 1) = (0,−1, 0). Let m be the line with pole (0, 1, 0). Since (0, 0, 1) ∈ m, we have
Ωm(0, 0, 1) = (0, 0, 1) and hence Ωm ∈ H. But

RΩmR−1(0, 0, 1) = RΩm(0,−1, 0) = R(0, 1, 0) = (0, 0,−1) ,

so RΩmR−1 /∈ H. Therefore H is not a normal subgroup.


