
Mathematics 2443-003

Examination I Form B

September 18, 2007

Name (please print)

Instructions: Give brief answers, but clearly indicate your reasoning. All functions are assumed to have continuous
derivatives of all orders, so results such as Clairaut’s Theorem may be freely applied if needed.

I.
(7)

For the function f(x, y) = yx, tell the maximum rate of change of this function at the point (2, 2). Find
the rate of change of f at the point (2, 2) in the direction toward (−1, 3).

∇f = yx ln(y)~ı + xyx−1~, so ∇f(2, 2) = 4 ln(2)~ı + 4~. The maximum rate of change at (2, 2) is
‖∇f(2, 2) ‖ = 4

√

1 + (ln(2))2.

The vector from (2, 2) to (−1, 3) is −3~ı+~, so a unit vector in this direction is ~u = − 3√
10

~ı+
1√
10

~. The

rate of change of f at (2, 2) in the direction of ~u is ∇f(2, 2) · ~u =
−3 · 4 ln(2)√

10
+

4√
10

=
4 − 12 ln(2)√

10
.

II.
(5)

Find the domain of the function f(x, y, z) = e
√

z−x2−y2

. Find its range (that is, the possible values that
f(x, y, z) assumes, as one considers all the points (x, y, z) in the domain of f). For finding the range, it
may be useful to examine the values of f on the portion of the domain that lies on the z-axis.

We need z − x2 − y2 ≥ 0, or z ≥ x2 + y2. So the domain is the paraboloid z = x2 + y2 and all the
points lying above it (or in set notation, {(x, y, z) | z ≥ x2 + y2}).
For the range, every value of f is of the form et for some t ≥ 0, so the range lies in the interval r ≥ 1.
On the other hand, if we examine the values of f on the points on the z-axis with z ≥ 0, we find
f(0, 0, z) = e

√

z. Since z can be any non-negative number, these equal the er with r ≥ 0. So all values
in the interval r ≥ 1 do appear as values, i. e. the range is all numbers r ≥ 1.

III.
(6)

Sketch a portion of a typical graph z = f(x, y), showing the tangent plane at a point (x0, y0, f(x0, y0)).
Let ~vx be the vector in the tangent plane whose ~ı-component is 1 and whose ~-component is 0 (i. e. ~vx is a
vector of the form ~ı + λ~k for some number λ). Show ~vx in your sketch, and express λ in terms of f or its
partial derivatives.

For the sketch, see your class notes. λ is fx(x0, y0), so ~vx =~ı + fx(x0, y0)~k.

IV.
(5)

Calculate the differential d(x2 + y2 + z2). Use it to estimate (1.1)2 + 1 + (1.1)2 by calculating the linear
part of the change of x2 + y2 + z2 starting from the point (1, 1, 1).

The differential is d(x2 + y2 + z2) = 2x dx + 2y dy + 2z dz.

Evaluating at x = y = z = 1, dx = 0.1, dy = 0, and dz = 0.1, we find the linear part of the change to
be 2 · (0.1) + 2 · (0) + 2 · (0.1) = 0.4, so the estimate is 3.4.

V.
(5)

Tell what Clairaut’s Theorem says. Use Clairaut’s Theorem to tell why there is no function f(x, y) for

which
∂f

∂x
= sin(xy) and

∂f

∂y
= cos(xy).

Clairaut’s Theorem says that (under some minor hypotheses on f)
∂2f

∂x ∂y
=

∂2f

∂y ∂x
, that is, taking

the same partial derivatives in different orders yields the same results.

Say you had a function f for which
∂f

∂x
= sin(xy) and

∂f

∂y
= cos(xy). Then, you would have

∂2f

∂y ∂x
=

∂

∂y
(sin(xy)) = x cos(xy)
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and
∂2f

∂x ∂y
=

∂

∂x
(cos(xy)) = −y sin(xy) ,

which would not be equal, producing a violation of Clairaut’s Theorem.

VI.
(5)

Use the Chain Rule to find
∂R

∂x
when x = 1 and y = 2 if R(u, v,w) = ln(u2 + v2 + w2), u = x + 2y,

v = 2x − y, and w = 2xy.

Using the Chain Rule, we have

∂R

∂x
=

∂R

∂u

∂u

∂x
+

∂R

∂v

∂v

∂x
+

∂R

∂w

∂w

∂x
=

2u

u2 + v2 + w2
· 1 +

2v

u2 + v2 + w2
· 2 +

2w

u2 + v2 + w2
· 2y .

When x = 1 and y = 2, we have u = 5, v = 0, and w = 4, so

∂R

∂x
=

10

41
· 1 +

0

41
· 2 +

8

41
· 2 · 2 =

42

41
.

VII.
(3)

A function R of the variables R1, R2, and R3 is given implicitly by
1

R
=

1

R1

+
1

R2

+
1

R3

. Use implicit

differentiation to find
∂R

∂R1

,
∂R

∂R2

, and
∂R

∂R3

.

Applying
∂

∂Ri

, we have − 1

R2

∂R

∂Ri

= − 1

R2

i

, so
∂R

∂Ri

=
R2

R2

i

.

x

y

z

1

1

VIII.
(4)

In an xy-coordinate system, sketch the gradient of the function whose
graph is shown to the right.

x

y
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IX.
(4)

Find all critical points of the function f(x, y) = x4 + y4 − 4xy + 2.

We have
∂f

∂x
= 4x3 − 4y and

∂f

∂y
= 4y3 − 4x. To find the critical points, we solve 4x3 − 4y = 0 and

4y3 − 4x = 0. The first says that y = x3, and putting this in the second we find that x9 − x = 0.
One solution is x = 0, and if x 6= 0 then x8 = 1 so x is 1 or −1. Since y = x3, the critical points are
(−1,−1), (0, 0), and (1, 1).

X.
(5)

Let T be the triangle bounded by the x-axis, the y-axis, and the line x + y = 1. Find the maximum and
minimum values of f(x, y) = 2x2 + y2 on:

(a) The bottom side of T , i. e. the side that lies in the x-axis.

The points on the bottom side of the triangle are the (x, 0) with 0 ≤ x ≤ 1. On these points, f(x, 0) =
2x2, so the minimum is 0 at (0, 0) and the maximum is 2 at (1, 0).

(b) The diagonal side of T , i. e. the side that lies in the line x + y = 1.

The points on the diagonal side of the triangle are the (x, 1 − x) with 0 ≤ x ≤ 1. On these points,
f(x, 1− x) = 2x2 + (1− x)2 = 3x2 − 2x + 1. The critical point is where 6x− 2 = 0, i. e. x = 1/3, so the
extrema can only occur at (0, 1), (1/3, 2/3), and (1, 0). The values of f at these points are 1, 2/3, and
2, so the minimum of f on this edge is 2/3 at (1/3, 2/3) and the maximum is 2 at (1, 0).

XI.
(5)

Use Lagrange multipliers to find the extreme value or values of f(x, y) = 2x2 + y2 on the line x + y = 1.

The constraint function is g(x, y) = x + y. We have ∇f = 4x~ı + 2y~ and ∇g = ~ı + ~. The equation
∇f = λ∇g becomes 4x2~ı + y2~ = λ~ı + λ~, or 4x = λ, 2y = λ. This says y = 2x, and since x + y = 1
we have x + 2x = 1 or x = 1/3 and y = 2/3. So the only local extreme value is the minimum at
(1/3, 2/3) that we found in the previous problem.


