I. Evaluate by changing to polar coordinates: \(\iint_R x + y \, dR \) where \(R \) is the region between \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 2 \) and above the \(x \)-axis.

II. For the function \(f(x, y) = \ln(x^2 + y^2) \), find the maximum rate of change at the point \((1, 2)\), and the direction in which it occurs. Find the directional derivative of \(f \) at \((1, 2)\) in the direction toward \((2, 4)\).

III. Let \(S \) be the portion of the sphere of radius \(a \) that lies in the first octant. Use the standard parameterization of \(S \) to calculate \(\iiint_S (y \vec{i} - x \vec{j} + \vec{k}) \cdot d\vec{S} \).

IV. Use the Divergence Theorem to calculate the surface integral \(\iiint_S (x^2 z^3 \vec{i} + 2xyz^3 \vec{j} + xz^4 \vec{k}) \cdot d\vec{S} \), where \(S \) is the surface of the box with \(0 \leq x \leq 3 \), \(0 \leq y \leq 2 \), \(0 \leq z \leq 1 \).

V. The radius of a right circular cone is increasing at a rate of 6 in/s while its height is decreasing at a rate of 3 in/s. At what rate is the volume \(V = \pi r^2 h/3 \) changing when the radius is 10 and the height is 5?

VI. Let \(S \) be the upper half of the sphere of radius 2, that is, the points \((x, y, z)\) with \(x^2 + y^2 + z^2 = 4 \) and \(z \geq 0 \), and suppose that \(S \) is oriented with the upward normal. Use Stokes' Theorem to evaluate \(\iint_S \text{curl}(x^2e^{yz} \vec{i} + y^2e^{xz} \vec{j} + z^2e^{xy} \vec{k}) \cdot d\vec{S} \).

VII. Let \(S \) be the upper half of the sphere of radius 1, that is, the points \((x, y, z)\) with \(x^2 + y^2 + z^2 = 1 \) and \(z \geq 0 \). Using the geometric interpretation of the surface integral of a vector field as the “flux” (that is, not by calculation using a parameterization or a formula from the formulas list), explain each of the following equalities:

1. \(\iint_S \vec{F} \cdot d\vec{S} = 0 \)
2. \(\iint_S \vec{k} \cdot d\vec{S} = \pi \)

VIII. Verify that the function \(u = \cos(x - at) + \ln(x + at) \) is a solution to the wave equation \(u_{tt} = a^2 u_{xx} \).

IX. Let \(S \) be the portion of the cylinder \(x^2 + z^2 = 4 \) that lies between the vertical planes \(y = 0 \) and \(y = 2 - x \).

1. Calculate \(\vec{r}_\theta, \vec{r}_h, \vec{r}_h \times \vec{r}_\theta \), and \(\| \vec{r}_h \times \vec{r}_\theta \| \).
2. Calculate \(\iint_S x \, dS \).
3. Calculate \(\iint_S x \vec{k} \cdot d\vec{S} \).

X. The curl of the vector field \(y \vec{i} - z \vec{j} + x \vec{k} \) is \(\vec{i} - \vec{j} - \vec{k} \). Let \(S \) be the triangle which is the part of the plane \(2x + y + z = 2 \) that lies in the first octant. Give \(S \) the upward normal, and give its boundary \(C \) the corresponding positive orientation. Use Stokes’ Theorem to evaluate the line integral \(\int_C (y \vec{i} - z \vec{j} + x \vec{k}) \cdot d\vec{r} \).

(Hint: the surface integral on \(S \) is easy to calculate if one uses the definition \(\iint_S \vec{G} \cdot d\vec{S} = \iint_S \vec{G} \cdot \vec{n} \, dS \).)
XI. In an xy-coordinate system, sketch the gradient of the function whose graph is shown to the right.

XII. A function R of the variables R_1, R_2, and R_3 is given implicitly by $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$. Use implicit differentiation to find $\frac{\partial R}{\partial R_3}$.

XIII. Use the Divergence Theorem to show that if E is a solid with boundary the surface S, then $\int \int_S \left(\frac{x}{3} \mathbf{i} + \frac{y}{3} \mathbf{j} + \frac{z}{3} \mathbf{k} \right) \cdot d\mathbf{S}$ always equals the volume of E.

XIV. On two different coordinate systems, graph the following vector fields:

1. $\vec{F}(x, y) = x \mathbf{i} + y \mathbf{j}$
2. $\vec{F}(x, y) = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$

XV. Sketch the region and change the order of integration for $\int_0^1 \int_{e^x}^e f(x, y) \, dy \, dx$.