- I. Find an equation for the sphere that has center $(4, -2, \pi)$ and contains the origin.
- (4) The radius is the distance from $(4, -2, \pi)$ to the origin (0, 0, 0), which is $\sqrt{4^2 + (-2)^2 + \pi^2} = \sqrt{\pi^2 + 20}$, so the equation is $(x 4)^2 + (y + 2)^2 + (z \pi)^2 = \pi^2 + 20$.
- **II**. Find parametric equations for the line that is the intersection of the planes x 2y 3z = 1 and 2x + y + z = 1.
- (4) The normal vectors are $\vec{i}-2\vec{j}-3\vec{k}$ and $2\vec{i}+\vec{j}+\vec{k}$. The line lies in both planes, so its direction vectors are perpendicular to both normal vectors. Therefore one possible direction vector is $(\vec{i}-2\vec{j}-3\vec{k})\times(2\vec{i}+\vec{j}+\vec{k})$. We calculate this to be $-3\vec{i}-7\vec{j}+5\vec{k}$. To find a point on the intersection line, we just need one solution to the simultaneous equations x 2y 3z = 1 and 2x + y + z = 1. When, say, x = 0, the solution would have to satisfy -2y 3z = 1 and y + z = 1, giving y = 4 and z = -3, so the point (0, 4, -3) lies in the intersection. Therefore parametric equations are x = t, y = 4 7t, and z = -3 + 5t.
- III. Determine the convergence or divergence of each of these series, using any information or method other(6) than the Limit Comparison Test.

1.
$$\sum_{n=1}^{\infty} \frac{7+7^n}{8+8^n}$$

We have $\frac{7+7^n}{8+8^n} < \frac{7+7^n}{8^n} < \frac{7^n+7^n}{8^n} = \frac{2 \cdot 7^n}{8^n}$. The series $\sum \frac{2 \cdot 7^n}{8^n}$ is geometric with $r = \frac{7}{8} < 1$, so
$$\sum_{n=1}^{\infty} \frac{7+7^n}{8+8^n}$$
 converges by the Comparison Test.
2.
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^{n^2}$$
Since $\lim_{n \to \infty} \left(\left(\frac{n-1}{n}\right)^{n^2}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{n-1}{n}\right)^n = \lim_{n \to \infty} \left(1+\frac{-1}{n}\right)^n = e^{-1} < 1, \sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^{n^2}$ converges by the Root Test.

- **IV**. Carry out a translation of the form $X = x x_0$, $Y = y y_0$, $Z = z z_0$ to put the equation $x^2 y^2 4z^2 = z^2 4z^2$
- (6) 2x + 16z + 16 into standard form. (You do not have to draw the graph, but you can if you want.) The graph is a hyperboloid of two sheets. Which traces are ellipses? At what points (in *XYZ*-coordinates) does it meet the *X*-axis?

Completing the square gives the equation $(x - 1)^2 - y^2 - 4(z + 2)^2 = 1$. If we take (X, Y, Z)coordinates centered at (1, 0, -2), that is, X = x - 1, Y = y, and Z = z + 2, the equation becomes $X^2 - Y^2 - 4Z^2 = 1$. This is a hyperboloid of two sheets meeting the X-axis in two points. Writing the equation as $Y^2 + 4Z^2 = X^2 - 1$, we see that the traces with X = k are ellipses when |X| > 1. When $X = \pm 1$, we obtain $Y^2 + 4Z^2 = 0$, which is the origin, so these are the points where the surface meets the X-axis. (Alternatively, you can just say that it meets the X-axis when Y = Z = 0, giving $X^2 = 1$ or $X = \pm 1$.) Page 2

- V. Let $\vec{a} = -4\vec{i} + \vec{j} + 3\vec{k}$ and $\vec{b} = \vec{i} + \vec{j} \vec{k}$. (4)
 - 1. Calculate the scalar projection of \vec{a} onto \vec{b} .

$$\vec{a} \cdot \frac{\vec{b}}{\|\vec{b}\|} = (-4\vec{i} + \vec{j} + 3\vec{k}) \cdot \frac{\vec{i} + \vec{j} - \vec{k}}{\sqrt{1 + 1 + 1}} = \frac{(-4) \cdot 1 + 1 \cdot 1 + 3 \cdot (-1)}{\sqrt{3}} = \frac{-6}{\sqrt{3}} = -2\sqrt{3}$$

2. Calculate the vector projection of \vec{a} onto \vec{b} .

$$\frac{\vec{a}\cdot\vec{b}}{\vec{b}\cdot\vec{b}}\vec{b} = \frac{(-4\vec{i}+\vec{j}+3\vec{k})\cdot(\vec{i}+\vec{j}-\vec{k})}{(\vec{i}+\vec{j}-\vec{k})\cdot(\vec{i}+\vec{j}-\vec{k})} \ (\vec{i}+\vec{j}-\vec{k}) = \frac{-6}{3} \ (\vec{i}+\vec{j}-\vec{k}) = -2\vec{i}-2\vec{j}+2\vec{k}$$

VI. Give an algebraic verification that $\|\vec{a} + \vec{b}\|^2 + \|\vec{a} - \vec{b}\|^2 = 2 \|\vec{a}\|^2 + 2 \|\vec{b}\|^2$, but not by doing a lengthy (4) calculation involving \vec{i}, \vec{j} , and \vec{k} .

$$\|\vec{a} + \vec{b}\|^2 + \|\vec{a} - \vec{b}\|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) + (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 2 \|\vec{a}\|^2 + 2 \|\vec{b}\|^2$$

VII. Give examples of the following: (4)

1. Vectors \vec{a} , \vec{b} , and \vec{c} for which $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$.

$$\vec{i} \times (\vec{i} \times \vec{j}) = \vec{i} \times \vec{k} = -\vec{j}$$
, but $(\vec{i} \times \vec{i}) \times \vec{j} = \vec{0} \times \vec{j} = \vec{0}$.

2. Nonzero vectors \vec{a} , \vec{b} , and \vec{c} for which $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ but $\vec{b} \neq \vec{c}$.

 $\vec{i} \times (\vec{i} + \vec{j}) = \vec{i} \times \vec{i} + \vec{i} \times \vec{j} = \vec{i} \times \vec{j}$, but $\vec{i} + \vec{j} \neq \vec{j}$.

VIII. Here is a fact: Let \vec{u} be any unit vector (i. e. $\|\vec{u}\| = 1$). If \vec{v} is any vector, then the length of $\vec{v} \times \vec{u}$ is no (4) more than the length of \vec{v} .

1. Give an algebraic explanation for this fact.

$$\| \vec{v} \times \vec{u} \| = \| \vec{v} \| \| \vec{u} \| \sin(\theta) = \| \vec{v} \| \sin(\theta) \le \| \vec{v} \|.$$

2. Give a geometric explanation for this fact.

 $\|\vec{v} \times \vec{u}\|$ is the area of the parallelogram spanned by \vec{v} and \vec{u} . This area is the base times the height. Regarding \vec{v} as the "base," the height is no more than the length of the other side \vec{u} , so the area $\|\vec{v} \times \vec{u}\|$ is no more than $\|\vec{v}\|$ times 1.

Page	3
------	---

IX. If you saw a movie of the planes $y \cos(\theta) + z \sin(\theta) = 0$ as θ went from 0 to 2π , what would they look like? (4) Use both words and picture(s) in your explanation.

> Normal vectors to these planes are $\cos(\theta)\vec{j} + \sin(\theta)\vec{k}$, which are the position vectors of the unit circle in the yz-plane. All the planes contain the origin, so also contain the x-axis. For $\theta = 0$, the normal vector is \vec{j} , so the plane would be the xz-plane. As θ increases, we would see the plane rotating counterclockwise, as indicated in the figure below. When $\theta = \pi$, we would see the yz-plane again, although with the original sides interchanged. When θ reaches 2π , the plane would be rotated back to its original position.

X. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: $x = \rho \sin(\phi) \cos(\theta)$, (4) $y = \rho \sin(\phi) \sin(\theta)$, $z = \rho \cos(\phi)$.

From the right triangle shown in the figure, we read off $z = \rho \cos(\phi)$ and $r = \rho \sin(\phi)$. Then, using the formula for polar coordinates in the horizontal plane containing P, we have $x = \rho \sin(\phi) \cos(\theta)$ and $x = \rho \sin(\phi) \sin(\theta)$.

XI. Draw the graph of this equation given in spherical coordinates: $\rho = \phi^3$.

(4)

XII. Write a possible equation for this saddle surface:

(4)

It is a saddle surface linear in y. In the yz-plane, it looks like $y = z^2$, and in the xy-plane, like $y = -x^2$, so a possible equation would be $y = z^2 - x^2$.

XIII. In higher dimensions, say dimension n, there are vectors $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ that play the roles of \vec{i}, \vec{j} , and \vec{k} . In (4) particular, $\vec{e_i} \cdot \vec{e_j} = 0$ when $i \neq j$, and $\vec{e_i} \cdot \vec{e_i} = 1$ for each i. Verify that if an n-dimensional vector \vec{v} equals $r_1\vec{e_1} + r_2\vec{e_2} + \cdots + r_n\vec{e_n}$, then $r_1 = \vec{v} \cdot \vec{e_1}$.

We calculate $\vec{v} \cdot \vec{e_1} = (r_1 \vec{e_1} + r_2 \vec{e_2} + \dots + r_n \vec{e_n}) \cdot \vec{e_1} = r_1 \vec{e_1} \cdot \vec{e_1} + r_2 \vec{e_2} \cdot \vec{e_1} + \dots + r_n \vec{e_n} \cdot \vec{e_1} = r_1 \cdot 1 + r_2 \cdot 0 + \dots + r_n \cdot 0 = r_1.$