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Name (please print)

I.
(12)

Determine the convergence or divergence of each of these series, using any information or method other

than the Limit Comparison Test. If the series has some negative terms, check for absolute convergence as
well.

1.

∞
∑

n=2

(−1)n−1

n ln(n)

The sequence
{ 1

n ln(n)

}

is decreasing for n ≥ 2, since both n and ln(n) increase as n increases. Also,

lim
1

n ln(n)
= 0, say by squeezing between the sequences {0} and { 1

n
}. By the Alternating Series Test,

∞
∑

n=2

(−1)n−1

n ln(n)
converges.

2.

∞
∑

n=2

1

n ln(n)

As in the previous problem, the function
1

x ln(x)
is decreasing for x ≥ 2. We have

∫

∞

2

1

x ln(x)
dx =

lim
b→∞

∫

b

2

1

x ln(x)
dx = lim

b→∞

ln(ln(x))
∣

∣

∣

b

2
= lim

b→∞

ln(ln(b)) − ln(ln(2)) = ∞. So
∞
∑

n=2

1

n ln(n)
diverges by the

Integral Test.

3.

∞
∑

n=1

7 + 7n

8 + 8n

We have
7 + 7n

8 + 8n
<

7 + 7n

8n
<

7n + 7n

8n
=

2 · 7n

8n
. The series

∑ 2 · 7n

8n
is geometric with r = 7

8 < 1, so

∞
∑

n=1

7 + 7n

8 + 8n
converges by the Comparison Test.

4.

∞
∑

n=1

(n − 1

n

)n
2

Since lim
n→∞

(

(n − 1

n

)n
2
)

1

n

= lim
n→∞

(n − 1

n

)n

= lim
n→∞

(

1 +
−1

n

)n

= e−1 < 1,

∞
∑

n=1

(n − 1

n

)n
2

converges

by the Root Test.
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II.
(6)

Find the Maclaurin series for arctan(x) by using the fact that arctan(x) =

∫

1

1 + x2
dx.

When −1 < x2 < 1, i. e. −1 < x < 1, we have

arctan(x) =

∫

1

1 + x2
dx

∫

1

1 − (−x2)
dx =

∫ ∞
∑

n=0

(−x2)n dx

=

∫ ∞
∑

n=0

(−1)nx2n dx = C +
∞
∑

n=0

(−1)n

2n + 1
x2n+1

When x = 0, we have arctan(0) = C+0, so C = 0. Therefore arctan(x) =

∞
∑

n=0

(−1)n

2n + 1
x2n+1 for −1 < x < 1.

[This is a beautiful series: arctan(x) = x − x3

3
+

x5

5
− x7

7
+ · · · . In particular, when x = 1, this becomes

π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · · .]

III.
(8)

Analyze the convergence behavior of the power series
∞
∑

n=0

n

4n
(3 − x)n. In particular, determine its center,

radius of convergence, and for every real number x determine whether the series converges absolutely,
converges conditionally, or diverges.

First we rewrite the series as

∞
∑

n=0

(−1)nn

4n
(x − 3)n, and note that the center is a = 3. Now, to apply

the Ratio Test, we calculate

lim
n→∞

∣

∣

∣

∣

(−1)n+1(n + 1)|x − 3|n+1

4n+1

∣

∣

∣

∣

∣

∣

∣

∣

(−1)nn|x − 3|n
4n

∣

∣

∣

∣

= lim
n→∞

n

4(n + 1)
|x − 3| =

1

4
|x − 3| .

This is less than 1 exactly when −1 ≤ 1
4(x−3) < 1, that is, −1 < x < 7. So the radius of convergence

is 4, and the series converges absolutely when −1 < x < 7 and diverges when x < −1 or 7 < x.

It remains to check the endpoints. When x = −1, the series becomes

∞
∑

n=0

(−1)nn

4n
(−4)n =

∞
∑

n=0

n, which

diverges since the terms do not limit to 0. When x = 4, it becomes
∞

∑

n=0

(−1)nn, which diverges for the

same reason.

IV.
(6)

Using the Maclaurin series of cos(x), find the Maclaurin series of the following functions. Make reasonable
simplifications.

(i) cos(2x)

Replacing x with 2x in

∞
∑

n=0

(−1)n

(2n)!
x2n, we obtain

∞
∑

n=0

(−1)n

(2n)!
(2x)2n =

∞
∑

n=0

(−1)n4n

(2n)!
x2n.

(ii) sin2(x)

Using the identity sin2(x) = 1
2 − 1

2 cos(2x), we have

sin2(x) =
1

2
− 1

2

∞
∑

n=0

(−1)n4n

(2n)!
x2n =

1

2
+

∞
∑

n=0

(−1)n−14n

2 (2n)!
x2n =

∞
∑

n=1

(−1)n−14n

2 (2n)!
x2n .
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V.
(6)

Let
∑

an be a series with positive terms. Suppose that lim
n→∞

n

√
an = L with 0 < L < 1.

1. Let r be a number with L < r < 1. Explain (at least informally) why for all sufficiently large values of n,
say n ≥ N , each n

√
an < r.

Taking ǫ = r−L, the definition of limit says that there is some N so that whenever n ≥ N , | n

√
an−L| <

r − L, which says that L − r < n

√
an − L < r − L and hence n

√
an < r. (Informally, for all sufficiently

large n, the distance from n

√
an to L must be smaller than r − L, forcing n

√
an < L + r − L = r.)

2. Use the Comparison test to deduce that
∑

an converges.

From n

√
an < r, we have 0 < an < rn for all sufficiently large n, so

∑

an converges by comparison with
the geometric series

∑

rn.

VI.
(5)

Showing a reasonable amount of detail, use integration by parts to verify that

∫

b

a

(b − t)5

5!
f (5)(t) dt =

f (6)(a)

6!
(b − a)6 +

∫

b

a

(b − t)6

6!
f (6)(t) dt.

We use integration by parts with u = f (5)(t) and dv =
(b − t)5

5!
. Using du = f (6)(t) dt and v =

−(b − t)6

6 · 5! = −(b − t)6

6 · 6! , we find

∫

b

a

(b − t)5

5!
f (6)(t) dt = −(b − t)6

6!
f (6)(t)

∣

∣

∣

∣

b

a

−
∫

b

a

−(b − t)6

6!
f (6)(t) dt

= 0 −
(

− (b − a)6

6!
f (6)(a)

)

+

∫

b

a

−(b − t)6

6!
f (6)(t) dt =

f (6)(a)

6!
(b − a)6 +

∫

b

a

(b − t)6

6!
f (6)(t) dt

VII.
(5)

Recall that lim
n→∞

xn

n!
= 0 (this can be seen, for example, by using the Ratio Test to check that the series

∞
∑

n=0

xn

n!
converges for every value of x and deducing that its terms limit to 0). Use Taylor’s Theorem

Rn(x) =

∫

x

a

(x − t)n

n!
f (n+1)(t) dt to verify that ex =

∞
∑

n=0

xn

n!
for all x > 0. (Hint: et ≤ ex for all t with

0 ≤ t ≤ x.)

Fix an x > 0. Applying Taylor’s Theorem with f(x) = ex and a = 0, we estimate

|Rn(x)| =

∣

∣

∣

∣

∫

x

0

(x − t)n

n!
et dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

x

0

(x − t)n

n!
ex dt

∣

∣

∣

∣

= ex

∣

∣

∣

∣

∫

x

0

(x − t)n

n!
dt

∣

∣

∣

∣

= ex

∣

∣

∣

∣

−(x − t)n+1

(n + 1)!

∣

∣

∣

x

0

∣

∣

∣

∣

= ex
xn+1

(n + 1)!

Since ex is fixed and lim
n→∞

xn

n!
= 0, this shows that lim

n→∞

|Rn(x)| = 0 and hence lim
n→∞

Rn(x) = 0. Since

Rn(x) = f(x) − Pn(x) and Pn(x) is a partial sum of the Taylor series, we conclude that ex =
∞
∑

n=0

xn

n!
.

[When x < 0, the only difference is that et < 1 for x ≤ t ≤ 0, so |Rn(x)| ≤ xn+1

(n + 1)!
. Again, limRn(x) = 0

and consequently ex =

∞
∑

n=0

xn

n!
.]
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VIII.
(5)

Recall that lim
n→∞

xn

n!
= 0. Use Lagrange’s form Rn(x) =

f (n+1)(c)

(n + 1)!
(x− a)n+1 to verify that ex =

∞
∑

n=0

xn

n!
for

all x > 0.

Since all derivatives of ex are equal to ex, Lagrange’s form for Rn(x) tells us that Rn(x) =
ec

(n + 1)!
xn+1

for some c between 0 and x. Since ex is increasing, we have ec < ex. Consequently we have for all n

that

|Rn(x)| ≤ exxn

n!
.

For a fixed x, ex is just some number, and lim
xn

n!
= 0, so lim |Rn(x)| = 0 and hence lim Rn(x) = 0.

Therefore we have for each x > 0 that

ex = lim Pn(x) + Rn(x) = lim Pn(x) =

∞
∑

n=0

xn

n!
.

[When x < 0, the only difference is that ec < 1, since c lies between x and 0. Again, limRn(x) = 0

and consequently ex =
∞
∑

n=0

xn

n!
.]

IX.
(5)

Evaluate

∫

x

0
e−t

2

dt.

∫

x

0
e−t2 dt =

∫

x

0

∞
∑

n=0

(−t2)

n!
dt =

∫

x

0

∞
∑

n=0

(−1)nt2n

n!
dt =

∞
∑

n=0

(−1)nt2n+1

(2n + 1)n!

∣

∣

∣

∣

x

0

=

∞
∑

n=0

(−1)nx2n+1

(2n + 1)n!
.


