Mathematics 2433-001H

Examination I

September 20, 2007

Instructions: Give concise answers, but clearly indicate your reasoning.

I. A curve is given parametrically by the equations
 \[x = \int_0^t \cos(\pi u^2/2) \, du, \quad y = \int_0^t \sin(\pi u^2/2) \, du. \]
 Find the length of the portion of this curve with \(0 \leq t \leq \pi \).

 \[
 \frac{dx}{dt} = \cos(\pi t^2/2) \quad \text{and} \quad \frac{dy}{dt} = \sin(\pi t^2/2),
 \]
 so
 \[
 ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\cos^2(\pi t^2/2) + \sin^2(\pi t^2/2)} \, dt = \frac{dt}{\pi}.
 \]
 Thus the desired length is \(\int_0^\pi \frac{dt}{\pi} = \frac{\pi}{2} \).

II. An equation \(r = f(\theta) \) defines a polar curve. Use the Chain Rule
 \[
 \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta} \sin(\theta) + r \cos(\theta)}{\frac{dr}{d\theta} \cos(\theta) - r \sin(\theta)}
 \]
 to derive a general formula for \(\frac{dy}{dx} \) in terms of \(r \) and \(\theta \) for such a curve.

III. A curve given by the parametric equations \(x = 2t^3, \quad y = 1 - t^2, \quad -\infty < t < \infty \).
 Find the area of the region bounded by the curve and the \(x \)-axis.
 \[
 \text{We have} \ y \geq 0 \text{ exactly when} \ -1 \leq t \leq 1, \text{so we want the area between the curve and the} \ x \text{-axis \ for these} \ t \text{-values. We calculate it as} \
 \int_{t=-1}^{t=1} y \, dx = \int_{t=-1}^{t=1} (1 - t^2) \, d(2t^3) = \int_{t=-1}^{t=1} (1 - t^2) \, d(6t^2) \, dt = \int_{-1}^{1} 6t^2 - 6t^4 \, dt = 4t^3 - \frac{6t^5}{5} \bigg|_{-1}^{1} = 4 - \frac{12}{5} = \frac{8}{5}.
 \]

IV. Find the surface area of a sphere of radius \(R \) by regarding it as \(x = R \cos(\theta), \quad y = R \sin(\theta) \) and rotating
 about the \(x \)-axis.

 We have \(ds = R \, d\theta \), and the distance to the axis of rotation is \(\rho = y = R \sin(\theta) \). So the surface area, integrating from \(\theta = \pi \) to \(\theta = 0 \) so as to integrate in the direction of increasing \(x \), is
 \[
 \int_{\pi}^{0} 2\pi R \sin(\theta) \, R \, d\theta = 2\pi R^2 \int_{\pi}^{0} \sin(\theta) \, d\theta = -2\pi R^2 \int_{\pi}^{0} \cos(\theta) \, d\theta = -2\pi R^2 (-1 - 1) = 4\pi R^2.
 \]

V. Calculate the area of the region that lies inside the polar curve \(r = 4 \sin(\theta) \) and outside the polar curve \(r = 2 \).

 We have \(4 \sin(\theta) \geq 2 \) when \(\sin(\theta) \geq \frac{1}{2} \), that is, \(\pi/6 \leq \theta \leq 5\pi/6 \). So the desired area is
 \[
 \int_{\pi/6}^{5\pi/6} \frac{1}{2}(16 \sin^2(\theta) - 4) \, d\theta = \int_{\pi/6}^{5\pi/6} 2 - 4 \cos(2\theta) \, d\theta = 2\theta - 2 \sin(2\theta) \bigg|_{\pi/6}^{5\pi/6} = 10\pi/6 - 2 \sin(5\pi/3) - (2\pi/6 - 2 \sin(\pi/3)) = 5\pi/3 + \sqrt{3} - \pi/3 + \sqrt{3} = 4\pi/3 + 2\sqrt{3}.
 \]
VI. The graph of a certain equation $r = f(\theta)$ is shown at the right, in a rectangular θ-r coordinate system. In an x-y coordinate system, make a reasonably accurate graph of the polar equation $r = f(\theta)$ for this function.

VII. State the Squeeze Theorem. Use the Squeeze Theorem to find the limit of $\left\{\frac{(2n-1)!}{(2n+1)!}\right\}$ by comparing it to the sequence $\{0\}$ and to some sequence of the form $\{n^p\}$.

If $a_n \leq b_n \leq c_n$ for all n (or, for all sufficiently large n), and $\lim a_n = L = \lim c_n$, then $\lim b_n$ exists and equals L.

We have $\frac{(2n-1)!}{(2n+1)!} = \frac{1 \cdot 2 \cdot 3 \cdots (2n-1)}{1 \cdot 2 \cdot 3 \cdots 2n + 1} = \frac{1}{2n(2n+1)}$. Also, $0 \leq \frac{1}{2n(2n+1)} \leq \frac{1}{n \cdot n} = n^{-2}$. Since $\lim 0 = 0$ and $\lim n^{-2} = 0$, the Squeeze Theorem shows that $\lim \left\{\frac{(2n-1)!}{(2n+1)!}\right\}$ exists and equals 0.

VIII. Determine whether each of the following series converges or diverges.

1. $\sum_{n=1}^{\infty} \arctan(n)$

 $\lim \arctan(n) = \pi/2 \neq 0$, so the series diverges.

2. $\sum_{n=1}^{\infty} (\sin(1))^n$

 The series is geometric with $r = \sin(1)$ lying in the range $-1 < r < 1$, so the series converges.

IX. Find all x for which the series $\sum_{n=0}^{\infty} \frac{1}{x^n}$ converges.

 The series is geometric with $r = \frac{1}{x}$, so it will converge exactly when $-1 < \frac{1}{x} < 1$, that is, when $x < -1$ or $1 < x$.
X. State the Monotonicity Theorem. Analyze the convergence of the sequence \(\left\{ \frac{n}{n^2 + 1} \right\} \) as follows:

1. State the Monotonicity Theorem.

A bounded monotonic sequence of real numbers converges to some real number.

2. Calculate that the derivative of the function \(\frac{x}{x^2 + 1} \) is nonpositive when \(x \geq 1 \). Deduce that \(\left\{ \frac{n}{n^2 + 1} \right\} \) is decreasing.

The derivative is \(\frac{(x^2 + 1) \cdot 1 - x \cdot 2x}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} \). For \(x \geq 1 \), \(1 - x^2 \leq 0 \) so this function is negative and therefore \(\frac{x}{x^2 + 1} \) is decreasing. In particular, its values at the integers, which are the terms of the sequence \(\left\{ \frac{n}{n^2 + 1} \right\} \), are decreasing.

3. Verify any other hypotheses of the Monotonicity Theorem, to deduce that \(\left\{ \frac{n}{n^2 + 1} \right\} \) converges.

For each \(n \), we have \(0 \leq \frac{n}{n^2 + 1} \leq \frac{n^2 + 1}{n^2 + 1} = 1 \), so the sequence terms are bounded between 0 and 1. Applying the Monotonicity Theorem, we deduce that the sequence is convergent.

4. Now, find the limit by dividing numerator and denominator by \(n \) and observing the effect of letting \(n \to \infty \).

\[
\frac{n}{n^2 + 1} = \frac{1}{n + \frac{1}{n}}.
\]
Since \(\frac{1}{n} \to 0 \), the denominator \(n + \frac{1}{n} \to \infty \), while the numerator is always 1, so \(\frac{1}{n + \frac{1}{n}} \to 0 \)

XI. Use a simple diagram involving \(dr \) and \(d\theta \) to derive an expression for \(ds \) in terms of \(dr \) and \(d\theta \).

\[
\begin{align*}
Y \\
\vdots \\
X
\end{align*}
\]

From this diagram, we have \(ds^2 = (r
d\theta)^2 + dr^2 \), so

\[
ds = \sqrt{r^2 d\theta^2 + dr^2} = \sqrt{r^2 d\theta^2 + \left(\frac{dr}{d\theta} \right)^2} = \sqrt{r^2 d\theta^2 + \left(\frac{dr}{d\theta} \right)^2 d\theta^2} = \sqrt{r^2 + \left(\frac{dr}{d\theta} \right)^2} d\theta.
\]