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Name (please print)

I.
(7)

Analyze the convergence behavior of the power series
∞

∑

n=1

1

nbn
(x − a)n, where a and b are constants with

b > 0. That is, determine its center, radius of convergence, and for every real number x determine whether
the series converges absolutely, converges conditionally, or diverges.

The center is a. Applying the Ratio Test, we have lim
n→∞

1

(n + 1) bn+1
|x − a|n+1

1

n bn
|x − a|n

= lim
n→∞

n|x − a|
(n + 1)b

=

|x − a|/b. We have −1 < |x − a|/b < 1 exactly when −b < x − a < b, so the radius of convergence
is b. Therefore the series converges absolutely for a − b < x < a + b and diverges when x < a − b or
a + b < x.

It remains to check the endpoints. For x = a − b, the series becomes
∞
∑

n=1

1

nbn
(−b)n =

∞
∑

n=1

(−1)n

n
,

which converges conditionally.

For x = a − b, the series becomes
∞

∑

n=1

1

nbn
bn =

∞
∑

n=1

1

n
, which diverges.

II.
(7)

State the Comparison Test, and use it to verify that
∞

∑

n=1

1

n1+1/n
diverges. (Hint: First verify that

lim
n→∞

n1/n = 1.)

The Comparison Test states that if
∑

an and
∑

bn are series with positive terms, and an < bn for all
n (or at least for all sufficiently large n), then

If
∑

bn converges, then
∑

an converges.

If
∑

an diverges, then
∑

bn diverges.

We first note that lim
n→∞

n1/n = lim
n→∞

eln(n)/n = e0 = 1, so for sufficiently large values of n, we have

n1/n < 2. So for sufficiently large n, we have
1

n1+1/n
=

1

n n1/n
>

1

2n
. Since

∑ 1

2n
diverges, the

Comparison Test shows that

∞
∑

n=1

1

n1+1/n
diverges.
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III.
(5)

Graph the equation r = cos(θ/3) for 0 ≤ θ ≤ 6π, first in the θ-r plane, then as a polar equation in the x-y
plane.

π 6π θ

r

y

x

(The graph is traced out twice as θ goes from 0 to 6π.)

IV.
(7)

State the Limit Comparison Test, and use it to verify that
∞
∑

n=1

(
n

√
2 − 1) diverges. (Hints: Use L’Hôpital’s

Rule to compare it to
∑ 1

n
. You may need the facts that lim

n→∞

21/n = 1 and
d(ax)

dx
= ax ln(a).)

The Limit Comparison Test says that if
∑

an and
∑

bn are series with positive terms, and lim
n→∞

an

bn
= c

for some number c with 0 < c < ∞, then
∑

an and
∑

bn either both converge or both diverge.

Using l’Hôpital’s Rule, we compute

lim
n→∞

n

√
2 − 1
1

n

= lim
n→∞

ln(2) 21/n
(

− 1

n2

)

− 1

n2

= lim
n→∞

ln(2) 21/n = ln(2) .

Since
∑ 1

n
diverges, the Limit Comparison Test shows that

∞
∑

n=1

(
n

√
2 − 1) diverges.
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V.
(7)

Give examples of the following:

1. A divergent series whose terms limit to 0.

∞
∑

n=1

1

n
.

2. A conditionally convergent series.

∞
∑

n=1

(−1)n

n
.

3. A geometric series

∞
∑

n=0

rn that converges to π.

We know that
∞
∑

n=0

rn =
1

1 − r
for −1 < r < 1, so we just need the value of r so that

1

1 − r
= π. This

gives r =
π − 1

π
.

VI.
(6)

Give examples of the following:

1. A power series

∞
∑

n=0

cnxn that converges only for x = 0.

∞
∑

n=0

n!xn. For if we apply the Ratio Test, we obtain lim
n→∞

(n + 1)! |xn+1|
n! |xn| = lim

n→∞

(n+1)|x|, which diverges

to ∞ for any x 6= 0. So the series converges only for x = 0.

2. A power series

∞
∑

n=0

cnxn whose radius of convergence is π.

Since

∞
∑

n=0

xn converges only for −1 < x < 1, the series

∞
∑

n=0

(x

π

)n
=

∞
∑

n=0

( 1

π

)n
xn converges only for

−1 <
x

π
< 1, that is, −π < x < π. Therefore it has radius of convergence π. [Alternatively, we could

just take a series as in problem I with b = π, such as

∞
∑

n=1

1

nπn
xn.]
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VII.
(3)

Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: x = ρ sin(φ) cos(θ),
y = ρ sin(φ) sin(θ), z = ρ cos(φ).

P

y

x

z
r

φ
θ

ρ

From the right triangle shown in the figure, we read off z = ρ cos(φ) and r = ρ sin(φ). Then, using
the formula for polar coordinates in the horizontal plane containing P , we have x = ρ sin(φ) cos(θ)
and x = ρ sin(φ) sin(θ).

VIII.
(4)

In higher dimensions, say dimension n, there are vectors ~e1, ~e2, . . . , ~en that play the roles of ~ı, ~, and ~k. In
particular, ~ei · ~ej = 0 when i 6= j, and ~ei · ~ei = 1 for each i. Verify that if an n-dimesional vector ~v equals
r1 ~e1 + r2 ~e2 + · · · + rn ~en, then ri = ~v · ~ei for each i.

We calculate

~v · ~ei = (r1 ~e1 + r2 ~e2 + · · · + ri~e + · · · + rn ~en) · ~e1

= r1 ~e1 · ~ei + r2 ~e2 · ~ei + · · · + ri~ei · ~ei + · · · + ·rn ~en · ~ei

= r1 · 0 + r2 · · · 0 + · · · + ri · 1 + · · · + rn · 0 = ri .

IX.
(6)

Give examples of the following:

1. Vectors ~a, ~b, and ~c for which (~a ×~b ) × ~c 6= ~a × (~b × ~c ).

~ı × (~ı × ~ ) =~ı × ~k = −~, but (~ı ×~ı ) × ~ = ~0 × ~ = ~0.

2. Nonzero vectors ~a, ~b, and ~c for which ~a ×~b = ~a × ~c but ~b 6= ~c.

~ı × (~ı + ~ ) =~ı ×~ı +~ı × ~ =~ı × ~, but ~ı + ~ 6= ~.

X.
(5)

Find an equation for the plane that contains the points (1, 2, 3), (1, 3, 4), and (2, 3, 5).

Calling these points P , Q, and R, the vector from P to Q is ~+~k and the vector from Q to R is ~ı+~k.
The cross product of these is normal to the plane that contains the points, and we compute it to be
~ı+~−~k. Since (1, 2, 3) lies in the plane, an equation for the plane is 1(x−1)+1(y−2)−1(z−3) = 0,
or x + y − z = 0.
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XI.
(9)

A point moves according to the vector-valued function ~r(t) = et~ı + e−t~.

1. Sketch the path of the point, indicating the direction of motion. (Hint: How are x and y related?)

We observe that y =
1

x
and x > 0 is increasing, giving the motion:

y

x

2. Calculate the velocity vectors ~r ′(t), the speed, and the unit tangent vector ~T (t).

The velocity vectors are ~r ′(t) = et~ı − e−t ~, so the speed is ‖ et~ı − e−t ~ ‖ =
√

e2t + e−2t .

The unit tangent vector is ~T (t) =
~r ′(t)

‖~r ′(t) ‖ =
e2~ı − e−t ~√
e2t + e−2t

.

3. Use aT =
~r ′(t) · ~r ′′(t)

‖~r ′(t) ‖ and aN =
‖~r ′(t) × ~r ′′(t) ‖

‖~r ′(t) ‖ to calculate the tangential and normal components of the

acceleration vector ~a(t).

First we compute ~r ′′(t) = et~ı + e−t ~, that is, ~r ′′(t) = ~r(t). So we have

aT =
~r ′(t) · ~r ′′(t)

‖~r ′(t) ‖ =
e2t − e−2t

√
e2t + e−2t

,

and

aN =
‖~r ′(t) × ~r ′′(t) ‖

‖~r ′(t) ‖ =
‖ 2~k ‖√

e2t + e−2t
=

2√
e2t + e−2t

.

4. When is the point speeding up? When is it slowing down?

It is speeding up when the tangential component aT is positive, that is, when e2t > e−2t. Applying
logarithm gives 2t > −2t or t > 0. Similarly, it is slowing down when the tangential component is
negative, which is when t < 0.

XII.
(6)

Write the general formula for the Taylor series of a function f(x) at x = a. Use it to calculate the Taylor
series of the function f(x) = x4 at x = 2.

The general form is
∞
∑

n=0

f (n)(a)

n!
(x − a)n.

f(2) = 16, f ′(2) = 4 ·23 = 32, f ′′(2) = 4 ·3 ·22 = 48, f (3)(2) = 4 ·3 ·2 ·21 = 48, f (4)(2) = 4 ·3 ·2 ·1 = 24,
and all higher derivatives are 0. So the Taylor series is

f(2) + f ′(2)(x − 2) + (f ′′(2)/2!)(x − 2)2 + (f (3)(2)/3!)(x − 2)3 + (f (4)(2)/4!)(x − 2)4

= 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4 .
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XIII.
(8)

For the helix ~r(t) = 2 sin(t)~ı + 3t~ + 2cos(t)~k:

1. Calculate the unit tangent vector ~T (t), and use it to calculate the unit normal ~N(t).

Regarded as a vector-valued function of t, the helix is ~r(t) = 2 sin(t)~ı + 3t~ + 2cos(t)~k, and

~v(t) = ~r ′(t) = 2 cos(t)~ı + 3~ − 2 sin(t)~k

‖ v(t) ‖ =

√

4 cos2(t) + 9 + 4 sin2(t) =
√

13

~T (t) = ~v(t)/‖~v(t) ‖ =
2cos(t)√

13
~ı +

3√
13

~ − 2 sin(t)√
13

~k .

A normal vector is ~T ′(t) =
−2 sin(t)√

13
~ı− 2 cos(t)√

13
~k. Since ‖ ~T ′(t) ‖ =

√

4 sin2(t)/13 + 4 cos2(t)/13 =
2√
13

,

the unit normal is ~N(t) = − sin(t)~ı − cos(t)~k.

2. Use the formula κ =
‖ ~T ′(t) ‖
‖~r ′(t) ‖ to calculate the curvature.

κ =
‖ ~T ′(t) ‖
‖~r ′(t) ‖ =

2/
√

13√
13

=
2

13
.

3. Use the formula κ =

∥

∥

∥

∥

d~T

ds

∥

∥

∥

∥

and the Chain Rule to calculate the curvature.

We have
ds

dt
= ‖~v(t) ‖ =

√
13, so

κ =

∥

∥

∥

∥

d~T

ds

∥

∥

∥

∥

=

∥

∥

∥

∥

d~T

dt

/

ds

dt

∥

∥

∥

∥

=
1√
13

∥

∥

∥

∥

d~T

dt

∥

∥

∥

∥

=
1√
13

2√
13

=
2

13
.

XIV.
(6)

Bonus Problem: Let u = 1+
x3

3!
+

x6

6!
+

x9

9!
+ · · · , v = x+

x4

4!
+

x7

7!
+

x10

10!
+ · · · , and w =

x2

2!
+

x5

5!
+

x8

8!
+ · · · .

Each of these converges by comparison with the Maclaurin Series of ex. Show that u3 +v3 +w3−3uvw = 1.
(Hint: What is u′?)

We compute that u′ = 0 +
3x2

3!
+

6x5

6!
+

9x8

9!
+ · · · = 0 +

x2

2!
+

x5

5!
+

x8

8!
+ · · · = w, and similarly v′ = u

and w′ = v. Then we have

(u3 + v3 + w3 − 3uvw)′ = 3u2u′ + 3v2v′ + 3w2w′ − 3u′vw − 3uv′w − 3uvw′

= 3u2w + 3v2u + 3w2v − 3vw2 − 3wu2 − 3uv2 = 0 .

This implies that u3 + v3 + w3 − 3uvw equals some constant. Evaluating u3 + v3 + w3 − 3uvw when
x = 0 gives 13 + 0 + 0 − 3 · 1 · 0 · 0 = 1, so the constant equals 1. That is, u3 + v3 + w3 − 3uvw = 1.


