I. Analyze the convergence behavior of the power series $\sum_{n=1}^{\infty} \frac{1}{nb^n} (x-a)^n$, where a and b are constants with b > 0. That is, determine its center, radius of convergence, and for every real number x determine whether the series converges absolutely, converges conditionally, or diverges.

The center is a. Applying the Ratio Test, we have $\lim_{n \to \infty} \frac{\frac{1}{(n+1)b^{n+1}} |x-a|^{n+1}}{\frac{1}{n b^n} |x-a|^n} = \lim_{n \to \infty} \frac{n|x-a|}{(n+1)b} =$

|x - a|/b. We have -1 < |x - a|/b < 1 exactly when -b < x - a < b, so the radius of convergence is b. Therefore the series converges absolutely for a - b < x < a + b and diverges when x < a - b or a + b < x.

It remains to check the endpoints. For x = a - b, the series becomes $\sum_{n=1}^{\infty} \frac{1}{nb^n} (-b)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, which converges conditionally.

For x = a - b, the series becomes $\sum_{n=1}^{\infty} \frac{1}{nb^n} b^n = \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges.

II. State the Comparison Test, and use it to verify that $\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$ diverges. (Hint: First verify that $\lim_{n \to \infty} n^{1/n} = 1.$)

The Comparison Test states that if $\sum a_n$ and $\sum b_n$ are series with positive terms, and $a_n < b_n$ for all n (or at least for all sufficiently large n), then

If $\sum b_n$ converges, then $\sum a_n$ converges.

If $\sum a_n$ diverges, then $\sum b_n$ diverges.

We first note that $\lim_{n\to\infty} n^{1/n} = \lim_{n\to\infty} e^{\ln(n)/n} = e^0 = 1$, so for sufficiently large values of n, we have $n^{1/n} < 2$. So for sufficiently large n, we have $\frac{1}{n^{1+1/n}} = \frac{1}{n n^{1/n}} > \frac{1}{2n}$. Since $\sum \frac{1}{2n}$ diverges, the Comparison Test shows that $\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$ diverges.

III. Graph the equation $r = \cos(\theta/3)$ for $0 \le \theta \le 6\pi$, first in the θ -r plane, then as a polar equation in the x-y (5) plane.

(The graph is traced out twice as θ goes from 0 to 6π .)

IV. State the Limit Comparison Test, and use it to verify that $\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$ diverges. (Hints: Use L'Hôpital's (7) Rule to compare it to $\sum \frac{1}{n}$. You may need the facts that $\lim_{n \to \infty} 2^{1/n} = 1$ and $\frac{d(a^x)}{dx} = a^x \ln(a)$.)

> The Limit Comparison Test says that if $\sum a_n$ and $\sum b_n$ are series with positive terms, and $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ for some number c with $0 < c < \infty$, then $\sum a_n$ and $\sum b_n$ either both converge or both diverge. Using l'Hôpital's Rule, we compute

$$\lim_{n \to \infty} \frac{\sqrt[n]{2} - 1}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\ln(2) \, 2^{1/n} \left(-\frac{1}{n^2} \right)}{-\frac{1}{n^2}} = \lim_{n \to \infty} \ln(2) \, 2^{1/n} = \ln(2)$$

Since $\sum \frac{1}{n}$ diverges, the Limit Comparison Test shows that $\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$ diverges.

- V. Give examples of the following: (7)
 - 1. A divergent series whose terms limit to 0.

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

2. A conditionally convergent series.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}.$$

3. A geometric series $\sum_{n=0}^{\infty} r^n$ that converges to π .

We know that
$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$
 for $-1 < r < 1$, so we just need the value of r so that $\frac{1}{1-r} = \pi$. This gives $r = \frac{\pi - 1}{\pi}$.

- **VI**. Give examples of the following:
- (6)
 - 1. A power series $\sum_{n=0}^{\infty} c_n x^n$ that converges only for x = 0.

 $\sum_{n=0}^{\infty} n! x^n$. For if we apply the Ratio Test, we obtain $\lim_{n \to \infty} \frac{(n+1)! |x^{n+1}|}{n! |x^n|} = \lim_{n \to \infty} (n+1)|x|$, which diverges to ∞ for any $x \neq 0$. So the series converges only for x = 0.

2. A power series $\sum_{n=0}^{\infty} c_n x^n$ whose radius of convergence is π .

Since $\sum_{n=0}^{\infty} x^n$ converges only for -1 < x < 1, the series $\sum_{n=0}^{\infty} \left(\frac{x}{\pi}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{\pi}\right)^n x^n$ converges only for $-1 < \frac{x}{\pi} < 1$, that is, $-\pi < x < \pi$. Therefore it has radius of convergence π . [Alternatively, we could

just take a series as in problem I with $b = \pi$, such as $\sum_{n=1}^{\infty} \frac{1}{n\pi^n} x^n$.]

VII. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: $x = \rho \sin(\phi) \cos(\theta)$, (3) $y = \rho \sin(\phi) \sin(\theta)$, $z = \rho \cos(\phi)$.

From the right triangle shown in the figure, we read off $z = \rho \cos(\phi)$ and $r = \rho \sin(\phi)$. Then, using the formula for polar coordinates in the horizontal plane containing P, we have $x = \rho \sin(\phi) \cos(\theta)$ and $x = \rho \sin(\phi) \sin(\theta)$.

VIII. In higher dimensions, say dimension n, there are vectors $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ that play the roles of \vec{i}, \vec{j} , and \vec{k} . In (4) particular, $\vec{e_i} \cdot \vec{e_j} = 0$ when $i \neq j$, and $\vec{e_i} \cdot \vec{e_i} = 1$ for each i. Verify that if an n-dimensional vector \vec{v} equals $r_1\vec{e_1} + r_2\vec{e_2} + \cdots + r_n\vec{e_n}$, then $r_i = \vec{v} \cdot \vec{e_i}$ for each i.

We calculate

$$\vec{v} \cdot \vec{e_i} = (r_1 \vec{e_1} + r_2 \vec{e_2} + \dots + r_i \vec{e_i} + \dots + r_n \vec{e_n}) \cdot \vec{e_1}$$

= $r_1 \vec{e_1} \cdot \vec{e_i} + r_2 \vec{e_2} \cdot \vec{e_i} + \dots + r_i \vec{e_i} \cdot \vec{e_i} + \dots + r_n \vec{e_n} \cdot \vec{e_i}$
= $r_1 \cdot 0 + r_2 \dots 0 + \dots + r_i \cdot 1 + \dots + r_n \cdot 0 = r_i$.

IX. Give examples of the following:

(6)

(5)

1. Vectors \vec{a}, \vec{b} , and \vec{c} for which $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$.

 $\vec{i} \times (\vec{i} \times \vec{j}) = \vec{i} \times \vec{k} = -\vec{j}$, but $(\vec{i} \times \vec{i}) \times \vec{j} = \vec{0} \times \vec{j} = \vec{0}$.

2. Nonzero vectors \vec{a} , \vec{b} , and \vec{c} for which $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ but $\vec{b} \neq \vec{c}$.

 $\vec{i} \times (\vec{i} + \vec{j}) = \vec{i} \times \vec{i} + \vec{i} \times \vec{j} = \vec{i} \times \vec{j}$, but $\vec{i} + \vec{j} \neq \vec{j}$.

X. Find an equation for the plane that contains the points (1, 2, 3), (1, 3, 4), and (2, 3, 5).

Calling these points P, Q, and R, the vector from P to Q is $\vec{j} + \vec{k}$ and the vector from Q to R is $\vec{i} + \vec{k}$. The cross product of these is normal to the plane that contains the points, and we compute it to be $\vec{i} + \vec{j} - \vec{k}$. Since (1, 2, 3) lies in the plane, an equation for the plane is 1(x-1) + 1(y-2) - 1(z-3) = 0, or x + y - z = 0. (9)

- **XI**. A point moves according to the vector-valued function $\vec{r}(t) = e^t \vec{i} + e^{-t} \vec{j}$.
 - 1. Sketch the path of the point, indicating the direction of motion. (Hint: How are x and y related?)

We observe that $y = \frac{1}{x}$ and x > 0 is increasing, giving the motion:

2. Calculate the velocity vectors $\vec{r}'(t)$, the speed, and the unit tangent vector $\vec{T}(t)$.

The velocity vectors are $\vec{r}'(t) = e^t \vec{i} - e^{-t} \vec{j}$, so the speed is $||e^t \vec{i} - e^{-t} \vec{j}|| = \sqrt{e^{2t} + e^{-2t}}$. The unit tangent vector is $\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||} = \frac{e^2 \vec{i} - e^{-t} \vec{j}}{\sqrt{e^{2t} + e^{-2t}}}$.

3. Use $a_T = \frac{\vec{r}'(t) \cdot \vec{r}''(t)}{\|\vec{r}'(t)\|}$ and $a_N = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|}$ to calculate the tangential and normal components of the acceleration vector $\vec{a}(t)$.

First we compute $\vec{r}''(t) = e^t \vec{i} + e^{-t} \vec{j}$, that is, $\vec{r}''(t) = \vec{r}(t)$. So we have

$$a_T = \frac{\vec{r}'(t) \cdot \vec{r}''(t)}{\|\vec{r}'(t)\|} = \frac{e^{2t} - e^{-2t}}{\sqrt{e^{2t} + e^{-2t}}}$$

and

$$a_N = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|} = \frac{\|2\vec{k}\|}{\sqrt{e^{2t} + e^{-2t}}} = \frac{2}{\sqrt{e^{2t} + e^{-2t}}}$$

4. When is the point speeding up? When is it slowing down?

It is speeding up when the tangential component a_T is positive, that is, when $e^{2t} > e^{-2t}$. Applying logarithm gives 2t > -2t or t > 0. Similarly, it is slowing down when the tangential component is negative, which is when t < 0.

XII. Write the general formula for the Taylor series of a function f(x) at x = a. Use it to calculate the Taylor (6) series of the function $f(x) = x^4$ at x = 2.

The general form is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$.

 $f(2) = 16, f'(2) = 4 \cdot 2^3 = 32, f''(2) = 4 \cdot 3 \cdot 2^2 = 48, f^{(3)}(2) = 4 \cdot 3 \cdot 2 \cdot 2^1 = 48, f^{(4)}(2) = 4 \cdot 3 \cdot 2 \cdot 1 = 24,$ and all higher derivatives are 0. So the Taylor series is

$$f(2) + f'(2)(x-2) + (f''(2)/2!)(x-2)^2 + (f^{(3)}(2)/3!)(x-2)^3 + (f^{(4)}(2)/4!)(x-2)^4$$

= 16 + 32(x-2) + 24(x-2)^2 + 8(x-2)^3 + (x-2)^4 .

XIII. For the helix $\vec{r}(t) = 2\sin(t)\vec{\imath} + 3t\vec{\jmath} + 2\cos(t)\vec{k}$: (8)

1. Calculate the unit tangent vector $\vec{T}(t)$, and use it to calculate the unit normal $\vec{N}(t)$.

Regarded as a vector-valued function of t, the helix is $\vec{r}(t) = 2\sin(t)\vec{i} + 3t\vec{j} + 2\cos(t)\vec{k}$, and

$$\vec{v}(t) = \vec{r}'(t) = 2\cos(t)\vec{\iota} + 3\vec{\jmath} - 2\sin(t)\vec{k}$$
$$\|v(t)\| = \sqrt{4\cos^2(t) + 9 + 4\sin^2(t)} = \sqrt{13}$$
$$\vec{T}(t) = \vec{v}(t)/\|\vec{v}(t)\| = \frac{2\cos(t)}{\sqrt{13}}\vec{\iota} + \frac{3}{\sqrt{13}}\vec{\jmath} - \frac{2\sin(t)}{\sqrt{13}}\vec{k} .$$

A normal vector is $\vec{T}'(t) = \frac{-2\sin(t)}{\sqrt{13}}\vec{i} - \frac{2\cos(t)}{\sqrt{13}}\vec{k}$. Since $\|\vec{T}'(t)\| = \sqrt{4\sin^2(t)/13 + 4\cos^2(t)/13} = \frac{2}{\sqrt{13}}$, the unit normal is $\vec{N}(t) = -\sin(t)\vec{i} - \cos(t)\vec{k}$.

2. Use the formula $\kappa = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|}$ to calculate the curvature.

$$\kappa = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|} = \frac{2/\sqrt{13}}{\sqrt{13}} = \frac{2}{13}$$

3. Use the formula $\kappa = \left\| \frac{dT}{ds} \right\|$ and the Chain Rule to calculate the curvature.

We have
$$\frac{ds}{dt} = \| \vec{v}(t) \| = \sqrt{13}$$
, so
 $\kappa = \left\| \frac{d\vec{T}}{ds} \right\| = \left\| \frac{d\vec{T}}{dt} \middle/ \frac{ds}{dt} \right\| = \frac{1}{\sqrt{13}} \left\| \frac{d\vec{T}}{dt} \right\| = \frac{1}{\sqrt{13}} \frac{2}{\sqrt{13}} = \frac{2}{13}$

XIV. Bonus Problem: Let $u = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \frac{x^9}{9!} + \cdots$, $v = x + \frac{x^4}{4!} + \frac{x^7}{7!} + \frac{x^{10}}{10!} + \cdots$, and $w = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \cdots$. (6) Each of these converges by comparison with the Maclaurin Series of e^x . Show that $u^3 + v^3 + w^3 - 3uvw = 1$. (Hint: What is u'?)

We compute that $u' = 0 + \frac{3x^2}{3!} + \frac{6x^5}{6!} + \frac{9x^8}{9!} + \dots = 0 + \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \dots = w$, and similarly v' = u and w' = v. Then we have

$$(u^{3} + v^{3} + w^{3} - 3uvw)' = 3u^{2}u' + 3v^{2}v' + 3w^{2}w' - 3u'vw - 3uvw' = 3u^{2}w + 3v^{2}u + 3w^{2}v - 3vw^{2} - 3wu^{2} - 3uv^{2} = 0.$$

This implies that $u^3 + v^3 + w^3 - 3uvw$ equals some constant. Evaluating $u^3 + v^3 + w^3 - 3uvw$ when x = 0 gives $1^3 + 0 + 0 - 3 \cdot 1 \cdot 0 \cdot 0 = 1$, so the constant equals 1. That is, $u^3 + v^3 + w^3 - 3uvw = 1$.