Mathematics 2433-003H Name (please print)
Final Examination
December 11, 2007

1
I Analyze the convergence behavior of the power series Z W(az —a)", where a and b are constants with
n

(7) n=1

b > 0. That is, determine its center, radius of convergence, and for every real number x determine whether
the series converges absolutely, converges conditionally, or diverges.

The center is a. Applying the Ratio Test, we have lim = lim M
(n+1)

|z — a|/b. We have —1 < |x — a|/b < 1 exactly when —b < x — a < b, so the radius of convergence

is b. Therefore the series converges absolutely for a — b < x < a 4+ b and diverges when x < a — b or

a+b<ux.

(e}
It remains to check the endpoints. For x = a — b, the series becomes Z b” Z
n

n=1 n=1
which converges conditionally.
o0

1
For x = a — b, the series becomes g b” = g —, which diverges.
“n n
n=1

o
1L State the Comparison Test, and use it to verify that Z diverges. (Hint: First verify that
n=

(7)

nl-l—l/n

lim n'/" =1.)

n—oo

The Comparison Test states that if > a,, and ) b, are series with positive terms, and a,, < b, for all
n (or at least for all sufficiently large n), then

If Y b, converges, then ) a,, converges.
If > a, diverges, then > b, diverges.

We first note that lim n'/" = lim e™™/" = ¢ = 1, so for sufficiently large values of n, we have
n—oo n—oo
1 1 1 1
l/n . — . .
n/™ < 2. So for sufficiently large n, we have peEs Y —/m > o Since ) on diverges, the

Comparison Test shows that Z diverges.

nlt+i/n
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IIT.  Graph the equation r = cos(0/3) for 0 < § < 6, first in the 6-r plane, then as a polar equation in the z-y
(5) plane.

(The graph is traced out twice as 6 goes from 0 to 67.)

o
IV.  State the Limit Comparison Test, and use it to verify that Z( /2 — 1) diverges. (Hints: Use L’Hopital’s

(7) n=1
1 xT
Rule to compare it to Z —. You may need the facts that lim 2"/ =1 and d(a”) = a” In(a).)
n n—00 x

a
The Limit Comparison Test says that if Y a,, and Y b,, are series with positive terms, and lim — = c

n—oo

for some number ¢ with 0 < ¢ < oo, then ) a, and ) b, either both converge or both diverge.

Using ’Hopital’s Rule, we compute

n

. In(2) 21/7 (— —
Va1 = lim il

lim
n—oo ].
n

1 .
Since Y — diverges, the Limit Comparison Test shows that E (V2 —1) diverges.
n

n=1
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V. Give examples of the following:
(7)
1. A divergent series whose terms limit to 0.

1
>
n=1

2. A conditionally convergent series.

o] _1)n
s e

n=1

e}

3. A geometric series Z r" that converges to .
n=0
= 1 1
We know that Zr” =1_, for —1 < r < 1, so we just need the value of r so that = = 7. This
n=0
m—1

gives r =

VI.  Give examples of the following:
(6)

o
1. A power series Z cpx™ that converges only for z = 0.

n=0

= (n+ 1)!ant
g nla™. For if we apply the Ratio Test, we obtain lim ~——=——— = lim (n+1)|z|, which diverges
n—oo

= n—00 n!|z"|

to oo for any x # 0. So the series converges only for x = 0.

oo
2. A power series g cpx”™ whose radius of convergence is .

n=0

o [ee] \n [e.e] 1 n

Since Z:L‘” converges only for —1 < z < 1, the series Z (—) = Z (—) " converges only for
m m

Zfo n=0 n=0
—1 < = < 1, that is, —7 < & < 7. Therefore it has radius of convergence 7. [Alternatively, we could

T

o
just take a series as in problem I with b = 7, such as Z —z"]
nm"

n=1
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VII. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: = = psin(¢) cos(6),
(3)  y=psin(¢)sin(f), z = pcos(¢).

z

/Toh

From the right triangle shown in the figure, we read off z = pcos(¢) and r = psin(¢). Then, using
the formula for polar coordinates in the horizontal plane containing P, we have = = psin(¢) cos()
and z = psin(¢)sin(0).

VIII. In higher dimensions, say dimension n, there are vectors €}, €, ..., €, that play the roles of 7, 7, and k. In
(4) particular, €; - €; = 0 when i # j, and ¢€; - €; = 1 for each 4. Verify that if an n-dimesional vector v’ equals
7161 + T9€3 + + - - + Tn€y, then r; = ¥ - €; for each 1.

We calculate

- =

U-€ = (riei +ra€a+ -+ ri€+ - +rpep) - €1

IX.  Give examples of the following:
(6) . . .
1. Vectors @, b, and ¢ for which (@ x b) x €# d x (b x ).

—

IX (X)) =Txk=—7but (Tx7)x7=0x

— —

X (T+7)=UxT+Tx T=0x ], but ¥4+ J# J.

X. Find an equation for the plane that contains the points (1,2,3), (1,3,4), and (2, 3,5).

()

Calling these points P, @, and R, the vector from P to Q) is j+ k and the vector from Q to Ris i+ k.
The cross product of these is normal to the plane that contains the points, and we compute it to be
7+ 7— k. Since (1,2,3) lies in the plane, an equation for the plane is 1(z — 1)+ 1(y —2) — 1(z — 3) = 0,
orz+y—z=0.
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XI. A point moves according to the vector-valued function 7(t) = e'7+ e~'7.
(9)
1. Sketch the path of the point, indicating the direction of motion. (Hint: How are = and y related?)

1
We observe that y = — and = > 0 is increasing, giving the motion:
x

y

N\

2. Calculate the velocity vectors 7 (t), the speed, and the unit tangent vector T(t).

X

The velocity vectors are 7/ (t) = ¢! 7— et 7, so the speed is || 7— et 7| = Vet + e~ 2.

7' (t) e2r—ety
=1

The unit tangent vector is T(t) =

I Ve e

[7(8) x ™" () |
17 ()

7I(t) - 7 (1)
17 (@) |

acceleration vector a(t).

3. Usear = and ay = to calculate the tangential and normal components of the

First we compute 7 (t) = ¢! 7+ e~' 7, that is, 7" (t) = 7(t). So we have

’F”(t) 'F//(t) th _ 672t
aT = e = 5
17/() | e2l 4 e 2
and .
oo IO X 2 2
7] VI re T JAteT

4. When is the point speeding up? When is it slowing down?

It is speeding up when the tangential component a7 is positive, that is, when e?* > e~?!. Applying

logarithm gives 2¢ > —2t or t > 0. Similarly, it is slowing down when the tangential component is
negative, which is when t < 0.

XII. Write the general formula for the Taylor series of a function f(x) at x = a. Use it to calculate the Taylor
(6) series of the function f(z) = z* at = = 2.

f(a)

n!

[ee]
The general form is Z

n=0
f(2) =16, f'(2) =4-23 =32, f"(2) =4-3-22 =48, f®)(2) =4.3.2.21 =48, fW(2) =4.3.2.1 = 24,
and all higher derivatives are 0. So the Taylor series is

F@) +£2)( =2)+ (£'2)/2)(= = 2)* + (fD(2)/3) (@ — 2)° + (P (2)/4) (= — 2)*
=16+ 32(x — 2) + 24(z — 2)* +8(z — 2)> + (z — 2)* .

(x —a)".
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XIII. For the helix #(t) = 2sin(t)7+ 3t7+ 2 cos(t)k:
(8)1. Calculate the unit tangent vector T'(t), and use it to calculate the unit normal N (¢).
Regarded as a vector-valued function of ¢, the helix is #(t) = 2sin(t)7+ 3t7+ 2 cos(t)k, and
F(t) = 7'(t) = 2cos(t)7+ 37— 2sin(t)k
lo(t) | = \/4cos?(t) + 9 + sin(t) = VI3

f<t>=e7<t>/ua<t>u—2‘ji) + ;’_ Q%ﬂ

.= —2sin(t)_, 2cos(t) » 2
A normal vector is T"(t) = 17— k. Since || T'(t) || = /4sin?(t)/13 + 4 cos?(t) /13 = —,
V13 V13 V13

the unit normal is N(t) = — sin(t)7 — cos(t)k.

kOl
O

170 _2/Vi3 _ 2

=@l vis o 13

2. Use the formula k = to calculate the curvature.

K =

and the Chain Rule to calculate the curvature.

3. Use the formula x = '
s

d
We have d—j = ||5(t) || = VI3, so

2 2

- EVE G

1% /dt

-7l%

6 4 7 10 2 5 8
AR z* ' ¢ o’
)éIV Bonus Problem: Letu-1+3'+6'—|—9|—|— ac+4|—|—7'—|—1—0'—|— andw———|—5'—|—8'+
(6) Each of these converges by comparison with the Maclaurin Series of €. Show that u?+v3 +w? — 3uvw = 1.
(Hint: What is u'?)
3 6 9 2 5 8
Wecomputethatu’zO—i—%—F%-i—%—F —0+x—+%+%+ = w, and similarly v' = u

and w’ = v. Then we have

(u? + v® + w? — 3uvw)’ = 3uu’ + 3%V + 3w — 3u'vw — 3uv'w — Juvw’

= 3u?w + 3v%u + 3w?v — 3vw? — 3wu® — 3u? =0 .

This implies that u3 4+ v3 4+ w3 — 3uvw equals some constant. Evaluating v + v3 4+ w3 — 3uvw when
x=0gives 14+0+0—3-1-0-0=1, so the constant equals 1. That is, u? + v3 + w3 — 3uvw = 1.



