I. Analyze the convergence behavior of the power series $\sum_{n=1}^{\infty} \frac{1}{n b^{n}}(x-a)^{n}$, where $a$ and $b$ are constants with
(7)
$b>0$. That is, determine its center, radius of convergence, and for every real number $x$ determine whether the series converges absolutely, converges conditionally, or diverges.

The center is $a$. Applying the Ratio Test, we have $\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1) b^{n+1}}|x-a|^{n+1}}{\frac{1}{n b^{n}}|x-a|^{n}}=\lim _{n \rightarrow \infty} \frac{n|x-a|}{(n+1) b}=$ $|x-a| / b$. We have $-1<|x-a| / b<1$ exactly when $-b<x-a<b$, so the radius of convergence is $b$. Therefore the series converges absolutely for $a-b<x<a+b$ and diverges when $x<a-b$ or $a+b<x$.
It remains to check the endpoints. For $x=a-b$, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n b^{n}}(-b)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, which converges conditionally.
For $x=a-b$, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n b^{n}} b^{n}=\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges.
II. State the Comparison Test, and use it to verify that $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$ diverges. (Hint: First verify that
(7) $\lim _{n \rightarrow \infty} n^{1 / n}=1$.)

The Comparison Test states that if $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms, and $a_{n}<b_{n}$ for all $n$ (or at least for all sufficiently large $n$ ), then

If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.
We first note that $\lim _{n \rightarrow \infty} n^{1 / n}=\lim _{n \rightarrow \infty} e^{\ln (n) / n}=e^{0}=1$, so for sufficiently large values of $n$, we have $n^{1 / n}<2$. So for sufficiently large $n$, we have $\frac{1}{n^{1+1 / n}}=\frac{1}{n n^{1 / n}}>\frac{1}{2 n}$. Since $\sum \frac{1}{2 n}$ diverges, the Comparison Test shows that $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$ diverges.
III. Graph the equation $r=\cos (\theta / 3)$ for $0 \leq \theta \leq 6 \pi$, first in the $\theta-r$ plane, then as a polar equation in the $x-y$ (5) plane.

(The graph is traced out twice as $\theta$ goes from 0 to $6 \pi$.)
IV. State the Limit Comparison Test, and use it to verify that $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)$ diverges. (Hints: Use L'Hôpital's
(7) Rule to compare it to $\sum \frac{1}{n}$. You may need the facts that $\lim _{n \rightarrow \infty} 2^{1 / n}=1$ and $\frac{d\left(a^{x}\right)}{d x}=a^{x} \ln (a)$.)

The Limit Comparison Test says that if $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ for some number $c$ with $0<c<\infty$, then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge. Using l'Hôpital's Rule, we compute

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{2}-1}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\ln (2) 2^{1 / n}\left(-\frac{1}{n^{2}}\right)}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \ln (2) 2^{1 / n}=\ln (2)
$$

Since $\sum \frac{1}{n}$ diverges, the Limit Comparison Test shows that $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)$ diverges.

Page 3
V. Give examples of the following:
(7)

1. A divergent series whose terms limit to 0 .

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

2. A conditionally convergent series.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

3. A geometric series $\sum_{n=0}^{\infty} r^{n}$ that converges to $\pi$.

We know that $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$ for $-1<r<1$, so we just need the value of $r$ so that $\frac{1}{1-r}=\pi$. This gives $r=\frac{\pi-1}{\pi}$.
VI. Give examples of the following:
(6)

1. A power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ that converges only for $x=0$.
$\sum_{n=0}^{\infty} n!x^{n}$. For if we apply the Ratio Test, we obtain $\lim _{n \rightarrow \infty} \frac{(n+1)!\left|x^{n+1}\right|}{n!\left|x^{n}\right|}=\lim _{n \rightarrow \infty}(n+1)|x|$, which diverges to $\infty$ for any $x \neq 0$. So the series converges only for $x=0$.
2. A power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ whose radius of convergence is $\pi$.

Since $\sum_{n=0}^{\infty} x^{n}$ converges only for $-1<x<1$, the series $\sum_{n=0}^{\infty}\left(\frac{x}{\pi}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{\pi}\right)^{n} x^{n}$ converges only for $-1<\frac{x}{\pi}<1$, that is, $-\pi<x<\pi$. Therefore it has radius of convergence $\pi$. [Alternatively, we could just take a series as in problem I with $b=\pi$, such as $\sum_{n=1}^{\infty} \frac{1}{n \pi^{n}} x^{n}$.]
VII. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: $x=\rho \sin (\phi) \cos (\theta)$, $y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi)$.


From the right triangle shown in the figure, we read off $z=\rho \cos (\phi)$ and $r=\rho \sin (\phi)$. Then, using the formula for polar coordinates in the horizontal plane containing $P$, we have $x=\rho \sin (\phi) \cos (\theta)$ and $x=\rho \sin (\phi) \sin (\theta)$.
VIII. In higher dimensions, say dimension $n$, there are vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ that play the roles of $\vec{\imath}, \vec{\jmath}$, and $\vec{k}$. In particular, $\vec{e}_{i} \cdot \vec{e}_{j}=0$ when $i \neq j$, and $\vec{e}_{i} \cdot \vec{e}_{i}=1$ for each $i$. Verify that if an $n$-dimesional vector $\vec{v}$ equals $r_{1} \overrightarrow{e_{1}}+r_{2} \overrightarrow{e_{2}}+\cdots+r_{n} \overrightarrow{e_{n}}$, then $r_{i}=\vec{v} \cdot \overrightarrow{e_{i}}$ for each $i$.

We calculate

$$
\begin{gathered}
\vec{v} \cdot \vec{e}_{i}=\left(r_{1} \overrightarrow{e_{1}}+r_{2} \overrightarrow{e_{2}}+\cdots+r_{i} \vec{e}+\cdots+r_{n} \overrightarrow{e_{n}}\right) \cdot \overrightarrow{e_{1}} \\
=r_{1} \overrightarrow{e_{1}} \cdot \overrightarrow{e_{i}}+r_{2} \overrightarrow{e_{2}} \cdot \overrightarrow{e_{i}}+\cdots+r_{i} \overrightarrow{e_{i}} \cdot \overrightarrow{e_{i}}+\cdots+\cdot r_{n} \overrightarrow{e_{n}} \cdot \overrightarrow{e_{i}} \\
=r_{1} \cdot 0+r_{2} \cdots 0+\cdots+r_{i} \cdot 1+\cdots+r_{n} \cdot 0=r_{i}
\end{gathered}
$$

IX. Give examples of the following:

1. Vectors $\vec{a}, \vec{b}$, and $\vec{c}$ for which $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$.

$$
\vec{\imath} \times(\vec{\imath} \times \vec{\jmath})=\vec{\imath} \times \vec{k}=-\vec{\jmath}, \text { but }(\vec{\imath} \times \vec{\imath}) \times \vec{\jmath}=\overrightarrow{0} \times \vec{\jmath}=\overrightarrow{0} \text {. }
$$

2. Nonzero vectors $\vec{a}, \vec{b}$, and $\vec{c}$ for which $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ but $\vec{b} \neq \vec{c}$.

$$
\vec{\imath} \times(\vec{\imath}+\vec{\jmath})=\vec{\imath} \times \vec{\imath}+\vec{\imath} \times \vec{\jmath}=\vec{\imath} \times \vec{\jmath} \text {, but } \vec{\imath}+\vec{\jmath} \neq \vec{\jmath} \text {. }
$$

X. Find an equation for the plane that contains the points $(1,2,3),(1,3,4)$, and $(2,3,5)$.

Calling these points $P, Q$, and $R$, the vector from $P$ to $Q$ is $\vec{\jmath}+\vec{k}$ and the vector from $Q$ to $R$ is $\vec{\imath}+\vec{k}$. The cross product of these is normal to the plane that contains the points, and we compute it to be $\vec{\imath}+\vec{\jmath}-\vec{k}$. Since $(1,2,3)$ lies in the plane, an equation for the plane is $1(x-1)+1(y-2)-1(z-3)=0$, or $x+y-z=0$.

Page 5
XI. A point moves according to the vector-valued function $\vec{r}(t)=e^{t} \vec{\imath}+e^{-t} \vec{\jmath}$.
(9)

1. Sketch the path of the point, indicating the direction of motion. (Hint: How are $x$ and $y$ related?)

We observe that $y=\frac{1}{x}$ and $x>0$ is increasing, giving the motion:

2. Calculate the velocity vectors $\vec{r}^{\prime}(t)$, the speed, and the unit tangent vector $\vec{T}(t)$.

The velocity vectors are $\vec{r}^{\prime}(t)=e^{t} \vec{\imath}-e^{-t} \vec{\jmath}$, so the speed is $\left\|e^{t} \vec{\imath}-e^{-t} \vec{\jmath}\right\|=\sqrt{e^{2 t}+e^{-2 t}}$.
The unit tangent vector is $\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{e^{2} \vec{\imath}-e^{-t} \vec{\jmath}}{\sqrt{e^{2 t}+e^{-2 t}}}$.
3. Use $a_{T}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$ and $a_{N}=\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}$ to calculate the tangential and normal components of the acceleration vector $\vec{a}(t)$.

First we compute $\vec{r}^{\prime \prime}(t)=e^{t} \vec{\imath}+e^{-t} \vec{\jmath}$, that is, $\vec{r}^{\prime \prime}(t)=\vec{r}(t)$. So we have

$$
a_{T}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{e^{2 t}-e^{-2 t}}{\sqrt{e^{2 t}+e^{-2 t}}},
$$

and

$$
a_{N}=\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{\|2 \vec{k}\|}{\sqrt{e^{2 t}+e^{-2 t}}}=\frac{2}{\sqrt{e^{2 t}+e^{-2 t}}} .
$$

4. When is the point speeding up? When is it slowing down?

It is speeding up when the tangential component $a_{T}$ is positive, that is, when $e^{2 t}>e^{-2 t}$. Applying logarithm gives $2 t>-2 t$ or $t>0$. Similarly, it is slowing down when the tangential component is negative, which is when $t<0$.
XII. Write the general formula for the Taylor series of a function $f(x)$ at $x=a$. Use it to calculate the Taylor series of the function $f(x)=x^{4}$ at $x=2$.

The general form is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$.
$f(2)=16, f^{\prime}(2)=4 \cdot 2^{3}=32, f^{\prime \prime}(2)=4 \cdot 3 \cdot 2^{2}=48, f^{(3)}(2)=4 \cdot 3 \cdot 2 \cdot 2^{1}=48, f^{(4)}(2)=4 \cdot 3 \cdot 2 \cdot 1=24$, and all higher derivatives are 0 . So the Taylor series is

$$
\begin{gathered}
f(2)+f^{\prime}(2)(x-2)+\left(f^{\prime \prime}(2) / 2!\right)(x-2)^{2}+\left(f^{(3)}(2) / 3!\right)(x-2)^{3}+\left(f^{(4)}(2) / 4!\right)(x-2)^{4} \\
=16+32(x-2)+24(x-2)^{2}+8(x-2)^{3}+(x-2)^{4} .
\end{gathered}
$$

## Page 6

XIII. For the helix $\vec{r}(t)=2 \sin (t) \vec{\imath}+3 t \vec{\jmath}+2 \cos (t) \vec{k}$ :

1. Calculate the unit tangent vector $\vec{T}(t)$, and use it to calculate the unit normal $\vec{N}(t)$.

Regarded as a vector-valued function of $t$, the helix is $\vec{r}(t)=2 \sin (t) \vec{\imath}+3 t \vec{\jmath}+2 \cos (t) \vec{k}$, and

$$
\begin{gathered}
\vec{v}(t)=\vec{r}^{\prime}(t)=2 \cos (t) \vec{\imath}+3 \vec{\jmath}-2 \sin (t) \vec{k} \\
\|v(t)\|=\sqrt{4 \cos ^{2}(t)+9+4 \sin ^{2}(t)}=\sqrt{13} \\
\vec{T}(t)=\vec{v}(t) /\|\vec{v}(t)\|=\frac{2 \cos (t)}{\sqrt{13}} \vec{\imath}+\frac{3}{\sqrt{13}} \vec{\jmath}-\frac{2 \sin (t)}{\sqrt{13}} \vec{k} .
\end{gathered}
$$

A normal vector is $\vec{T}^{\prime}(t)=\frac{-2 \sin (t)}{\sqrt{13}} \vec{\imath}-\frac{2 \cos (t)}{\sqrt{13}} \vec{k}$. Since $\left\|\vec{T}^{\prime}(t)\right\|=\sqrt{4 \sin ^{2}(t) / 13+4 \cos ^{2}(t) / 13}=\frac{2}{\sqrt{13}}$, the unit normal is $\vec{N}(t)=-\sin (t) \vec{\imath}-\cos (t) \vec{k}$.
2. Use the formula $\kappa=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}$ to calculate the curvature.

$$
\kappa=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{2 / \sqrt{13}}{\sqrt{13}}=\frac{2}{13} .
$$

3. Use the formula $\kappa=\left\|\frac{d \vec{T}}{d s}\right\|$ and the Chain Rule to calculate the curvature.

We have $\frac{d s}{d t}=\|\vec{v}(t)\|=\sqrt{13}$, so

$$
\kappa=\left\|\frac{d \vec{T}}{d s}\right\|=\left\|\frac{d \vec{T}}{d t} / \frac{d s}{d t}\right\|=\frac{1}{\sqrt{13}}\left\|\frac{d \vec{T}}{d t}\right\|=\frac{1}{\sqrt{13}} \frac{2}{\sqrt{13}}=\frac{2}{13}
$$

XIV. Bonus Problem: Let $u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots, v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\frac{x^{10}}{10!}+\cdots$, and $w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots$.
(6)
(6) Each of these converges by comparison with the Maclaurin Series of $e^{x}$. Show that $u^{3}+v^{3}+w^{3}-3 u v w=1$. (Hint: What is $u^{\prime}$ ?)

We compute that $u^{\prime}=0+\frac{3 x^{2}}{3!}+\frac{6 x^{5}}{6!}+\frac{9 x^{8}}{9!}+\cdots=0+\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots=w$, and similarly $v^{\prime}=u$ and $w^{\prime}=v$. Then we have

$$
\begin{gathered}
\left(u^{3}+v^{3}+w^{3}-3 u v w\right)^{\prime}=3 u^{2} u^{\prime}+3 v^{2} v^{\prime}+3 w^{2} w^{\prime}-3 u^{\prime} v w-3 u v^{\prime} w-3 u v w^{\prime} \\
=3 u^{2} w+3 v^{2} u+3 w^{2} v-3 v w^{2}-3 w u^{2}-3 u v^{2}=0
\end{gathered}
$$

This implies that $u^{3}+v^{3}+w^{3}-3 u v w$ equals some constant. Evaluating $u^{3}+v^{3}+w^{3}-3 u v w$ when $x=0$ gives $1^{3}+0+0-3 \cdot 1 \cdot 0 \cdot 0=1$, so the constant equals 1 . That is, $u^{3}+v^{3}+w^{3}-3 u v w=1$.

