I. (7) Analyze the convergence behavior of the power series \(\sum_{n=1}^{\infty} \frac{1}{nb^n} (x - a)^n \), where \(a \) and \(b \) are constants with \(b > 0 \). That is, determine its center, radius of convergence, and for every real number \(x \) determine whether the series converges absolutely, converges conditionally, or diverges.

II. (7) State the Comparison Test, and use it to verify that \(\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}} \) diverges. (Hint: First verify that \(\lim_{n \to \infty} n^{1/n} = 1 \).)

III. (5) Graph the equation \(r = \cos(\theta/3) \) for \(0 \leq \theta \leq 6\pi \), first in the \(\theta-r \) plane, then as a polar equation in the \(x-y \) plane.

IV. (7) State the Limit Comparison Test, and use it to verify that \(\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1) \) diverges. (Hints: Use L'Hôpital's Rule to compare it to \(\sum \frac{1}{n} \). You may need the facts that \(\lim_{n \to \infty} \frac{2^{1/n}}{n} = 1 \) and \(\frac{d(a^x)}{dx} = a^x \ln(a) \).)

V. (7) Give examples of the following:
 1. A divergent series whose terms limit to 0.
 3. A geometric series \(\sum_{n=0}^{\infty} r^n \) that converges to \(\pi \).

VI. (6) Give examples of the following:
 1. A power series \(\sum_{n=0}^{\infty} c_n x^n \) that converges only for \(x = 0 \).
 2. A power series \(\sum_{n=0}^{\infty} c_n x^n \) whose radius of convergence is \(\pi \).

VII. (3) Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: \(x = \rho \sin(\phi) \cos(\theta) \), \(y = \rho \sin(\phi) \sin(\theta) \), \(z = \rho \cos(\phi) \).

VIII. (4) In higher dimensions, say dimension \(n \), there are vectors \(\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n \) that play the roles of \(\vec{i}, \vec{j}, \) and \(\vec{k} \). In particular, \(\vec{e}_i \cdot \vec{e}_j = 0 \) when \(i \neq j \), and \(\vec{e}_i \cdot \vec{e}_i = 1 \) for each \(i \). Verify that if an \(n \)-dimensional vector \(\vec{v} \) equals \(r_1 \vec{e}_1 + r_2 \vec{e}_2 + \cdots + r_n \vec{e}_n \), then \(r_i = \vec{v} \cdot \vec{e}_i \) for each \(i \).

IX. (6) Give examples of the following:
 1. Vectors \(\vec{a}, \vec{b}, \) and \(\vec{c} \) for which \((\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c}) \).
 2. Nonzero vectors \(\vec{a}, \vec{b}, \) and \(\vec{c} \) for which \(\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \) but \(\vec{b} \neq \vec{c} \).
X. Find an equation for the plane that contains the points (1, 2, 3), (1, 3, 4), and (2, 3, 5).

XI. A point moves according to the vector-valued function \(\mathbf{r}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j} \).

1. Sketch the path of the point, indicating the direction of motion. (Hint: How are \(x \) and \(y \) related?)

2. Calculate the velocity vectors \(\mathbf{r}'(t) \), the speed, and the unit tangent vector \(\mathbf{T}(t) \).

3. Use \(a_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{\| \mathbf{r}'(t) \|} \) and \(a_N = \frac{\| \mathbf{r}'(t) \times \mathbf{r}''(t) \|}{\| \mathbf{r}'(t) \|} \) to calculate the tangential and normal components of the acceleration vector \(\mathbf{a}(t) \).

4. When is the point speeding up? When is it slowing down?

XII. Write the general formula for the Taylor series of a function \(f(x) \) at \(x = a \). Use it to calculate the Taylor series of the function \(f(x) = x^4 \) at \(x = 2 \).

XIII. For the helix \(\mathbf{r}(t) = 2 \sin(t) \mathbf{i} + 3t \mathbf{j} + 2 \cos(t) \mathbf{k} \):

1. Calculate the unit tangent vector \(\mathbf{T}(t) \), and use it to calculate the unit normal \(\mathbf{N}(t) \).

2. Use the formula \(\kappa = \frac{\| \mathbf{T}'(t) \|}{\| \mathbf{r}'(t) \|} \) to calculate the curvature.

3. Use the formula \(\kappa = \frac{d \mathbf{T}}{ds} \) and the Chain Rule to calculate the curvature.

XIV. Bonus Problem: Let \(u = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \frac{x^9}{9!} + \cdots, v = x + \frac{x^4}{4!} + \frac{x^7}{7!} + \frac{x^{10}}{10!} + \cdots, \) and \(w = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \cdots \). Each of these converges by comparison with the Maclaurin Series of \(e^x \). Show that \(u^3 + v^3 + w^3 - 3uvw = 1 \). (Hint: What is \(u' \)?)