I. State the Law of Cosines, and verify it. A helpful figure is shown to the right.

The Law of Cosines says that if a, b, and c are the sides of a triangle, and θ is the angle where the sides of lengths a and b meet, then

\[c^2 = a^2 + b^2 - 2ab\cos(\theta). \]

To verify the Law of Cosines, we first note that the coordinate of the vertex of the triangle that lies on the circle is $(a\cos(\theta), a\sin(\theta))$. Therefore the height of the triangle is $a\sin(\theta)$. The base of the right-hand right triangle is $b - a\cos(\theta)$. Applying the Pythagorean Theorem to that triangle, we have

\[c^2 = a^2\sin^2(\theta) + (b - a\cos(\theta))^2 = a^2\sin^2(\theta) + b^2 - 2ab\cos(\theta) + a^2\cos^2(\theta) = a^2 + b^2 - 2ab\cos(\theta). \]

II. The angle of elevation of the sun is decreasing at 0.25 radians per hour. How fast is the length of the shadow of a 100 meter tall tower changing at a time (around 4 p.m.) when the angle of elevation of the sun is $\pi/6$?

We are given that $\frac{d\theta}{dt} = -0.25$, and the problem asks for $\left. \frac{ds}{dt}\right|_{\theta=\pi/6}$. From the above diagram, we have

\[s/100 = \cot(\theta). \]

Differentiating gives

\[\frac{1}{100} \frac{ds}{dt} = -\csc^2(\theta) \frac{d\theta}{dt}, \]

so $\frac{ds}{dt} = -100\csc^2(\theta) \frac{d\theta}{dt}$. Evaluating when $\theta = \pi/6$, we have

\[\left. \frac{ds}{dt}\right|_{\theta=\pi/6} = -100\csc^2(\pi/6) \left. \frac{d\theta}{dt}\right|_{\theta=\pi/6} = -100 \cdot 2^2 \cdot (-0.25) = 100. \]

That is, the length of the shadow is increasing at 100 meters per hour.

III. The Mean Value Theorem states that if a function f is differentiable at all points between a and b, and is continuous at a and b as well, then there exists a c between a and b so that $f(b) - f(a) = f'(c)(b - a)$.

1. Find a value that works as the number c in the Mean Value Theorem for the function $x^{2/3}$ on the interval $[0, 8]$.

We need $8^{2/3} - 0^{2/3} = f'(c)(8 - 0)$. Since $f'(x) = 2x^{-1/3}/3$, this says that $4 = 8 \cdot 2c^{-1/3}/3$. So $c^{1/3} = 4/3$, giving $c = 64/27$.

2. Verify that if $f'(x) \leq 0$ for all x with $a \leq x \leq b$, then $f(b) \leq f(a)$.

\[f(b) - f(a) = f'(c)(b - a) \leq 0, \] the latter inequality since $f'(c) \leq 0$ and $b - a > 0$. So we have $f(b) \geq f(a)$.

3. Verify that if \(f'(x) = 0 \) for all \(x \) in a (connected, but not necessarily closed) interval, then \(f \) is constant on the interval.

Choose some point \(x_0 \) in the interval, and let \(x \) be any other point in the interval. Applying the Mean Value Theorem, we have \(f(x) - f(x_0) = f'(c)(x - x_0) \). Since \(c \) is between \(x \) and \(x_0 \), it must also lie in the interval, and \(f'(c) = 0 \). So \(f(x) = f(x_0) \). This is true for all \(x \) in the interval, so \(f \) is constant.

4. Show that the function \(2x - 3 - \sin(x) \) has at most one root between \(-5\) and \(5\).

Letting \(f(x) \) be this function, we have \(f'(x) = 2 - \cos(x) \). Since \(-1 \leq \cos(x) \leq 1\), the derivative is nonzero at all points. If the function had two roots \(r_1 \) and \(r_2 \) in the interval, then by the Mean Value Theorem we would have \(0 = f(r_1) - f(r_2) = f'(c)(r_1 - r_2) \) for some \(c \) between \(r_1 \) and \(r_2 \), giving \(f'(c) = 0 \). This is impossible since \(f'(x) \) is never equal to 0.

5. Show that the function \(2x - 3 - \sin(x) \) has at least one root between \(-5\) and \(5\).

Letting \(f(x) \) be this function, we have \(f(-5) = -13 - \sin(-5) \leq -12 \), and \(f(5) = 7 - \sin(5) \geq 5 \). Since \(f \) is continuous and \(f(-5) < 0 < f(5) \), the Intermediate Value Theorem guarantees that there is a \(c \) between \(-5\) and \(5\) so that \(f(c) = 0 \).

IV. Find all critical points of the function \(5t^{2/3} + t^{5/3} \).

The derivative is \(10t^{-1/3}/3 + 5t^{2/3}/3 \). This is undefined at \(t = 0 \), so \(t = 0 \) is one critical point. For nonzero values of \(t \), we must solve \(10t^{-1/3}/3 + 5t^{2/3}/3 = 0 \). Factoring, we have \((5t^{-1/3}/3)(2 + t) \). Since \(t^{-1/3} \) is never 0, the only other critical point is \(t = -2 \).

V. One of the lines that passes through the point \((2, 0)\) and is tangent to the graph of \(y = x^4 \) is \(y = 0 \). Find the other one.

Let \((x_0, x_0^4) \) be the point of tangency. The slope of the tangent line can be expressed either as \(4x^3 \big|_{x=x_0} = 4x_0^3 \) or as \(\frac{x_0^4 - 0}{x_0 - 2} \). Equating these and solving gives \(x_0 = \frac{8}{3} \), so the slope is \(4 \cdot \left(\frac{8}{3}\right)^3 = \frac{211}{37} \). Since the line passes through \((2, 0)\), an equation is \(y = \frac{211}{37}(x - 2) \).

VI. The Extreme Value Theorem says that a continuous function on a closed interval must assume maximum and minimum values.

1. Give an example of a trigonometric function which is continuous on an open interval, and assumes neither a maximum nor a minimum value on the interval.

\(\tan(x) \) on the interval \((-\pi/2, \pi/2)\), for instance

2. Give an example of a trigonometric function which is continuous on an open interval, and assumes both maximum and minimum values on the interval.

\(\sin(x) \) on the interval \((0, 2\pi)\), for instance
A certain function \(f(x) \) has derivative \(f'(x) = \frac{x}{x^2 + 1} \).

1. Determine where \(f'(x) \) is positive, and where it is negative.

 Since \(x^2 + 1 \) is always positive, \(f'(x) \) is negative when \(x < 0 \) and positive when \(x > 0 \).

2. Calculate \(f''(x) \). Determine where it is positive, and where it is negative.

 \[f''(x) = \frac{1 - x^2}{(x^2 + 1)^2} \]

 Since \((x^2 + 1)^2 > 0 \) for all \(x \), \(f''(x) \) is negative when \(1 - x^2 < 0 \), i.e. when \(x < 1 \) or \(x > 1 \), and positive when \(1 - x^2 > 0 \), i.e. when \(-1 < x < 1 \).

3. Where does the minimum value of \(f(x) \) occur? Why?

 Since \(f'(x) \) changes from negative to positive only at \(x = 0 \), the minimum value of \(f \) must occur at \(x = 0 \).

4. Determine where \(f(x) \) is concave up, and where it is concave down.

 \(f(x) \) is concave up where \(f''(x) > 0 \), i.e. for \(-1 < x < 1\), and is concave down where \(f''(x) < 0 \), i.e. for \(x < -1 \) and \(x > 1 \).

5. Find all inflection points of \(f \).

 \(f''(x) \) changes sign at \(x = -1 \) and \(x = 1 \), so the inflection points of \(f \) are at \(x = \pm 1 \).

Use the definition of rate of change to show that if \(f'(a) > 0 \), then there exists a \(\delta > 0 \) so that if \(a < a + h < a + \delta \), then \(f(a) < f(x) \).

Hint: Write \(f(x) = f(a) + f'(a)h + E(h) \), where \(\lim_{h \to 0} \frac{E(h)}{h} = 0 \), and use the observation that \(f(a) + f'(a)h + E(h) = f(a) + f'(a) + \frac{E(h)}{h} \) h.

We have \(\lim_{h \to 0} \frac{E(h)}{h} = 0 \). Taking \(\epsilon = f'(a) \) in the definition of limit, there exists a \(\delta > 0 \) so that if \(0 < |h| < \delta \), then \(\left| \frac{E(h)}{h} \right| < f'(a) \). This says that \(-f'(a) < \frac{E(h)}{h} < f'(a) \), so \(0 < f'(a) + \frac{E(h)}{h} \). In particular, when \(a < a + h < a + \delta \), we have \(0 < h < \delta \) so

\[f(x) = f(a) + f'(a)h + E(h) = f(a) + f'(a) + \frac{E(h)}{h} h > f(a). \]