Math 1823 homework

1. (due 9/5) 1.1 # 12, 15, 19, 47-53

2. (9/5) Draw a diagram (with explanation, of course) illustrating cot(t) and csc(t), analogous to our geometric interpretation of tan(t) and sec(t).

3. (9/5) 1.3 # 6-7, 13-16, 19 (complete the square), 22, 37, 44, 49, 52-54, 57-59, 61(b), 62-64

4. (9/5) Calculate the slopes of the tangent lines to the graph of \(y = x^3 \) as follows.
 (a) Let \(x_0 \) be a fixed positive \(x \)-value, and let \(M(h) \) be the function of \(h \) that is the slope of the line between \((x_0, x_0^3) \) and \((x_0 + h, (x_0 + h)^3) \). Calculate \(M(h) \), obtaining the expression
 \[
 M(h) = (3x_0^2 + 3hx_0 + h^2) \frac{h}{h}.
 \]
 (b) Calculate (by completing the square) that \(h^2 + 3x_0h + 3x_0^2 = (h + \frac{3x_0}{2})^2 + \frac{3x_0^2}{4} \)
 (c) For the graph \(y = h^2 \) in the \(y-h \) plane, what is the value of \(y \) when \(h = \frac{3x_0^2}{2} \)?
 (d) Starting from the graph \(y = h^2 \) in the \(y-h \) plane, apply horizontal and vertical translation to the expression in (b) to produce the graph of \(y = M(h) \). The graph will be a parabola, except that the point where the parabola meets the \(y \)-axis is missing. Determine the \(y \)-coordinate of this point.
 (e) Explain as clearly as you can, making use of the graph of \(y = x^3 \) and the graph in (d), why the \(y \)-coordinate found in (d) should be the slope of the tangent line to \(y = x^3 \) at the point \((x_0, x_0^3) \).

5. (9/5) (Optional. Do this problem only if you think it is fun.) Calculate the slopes of the tangent lines to the graph of \(y = x^3 \) without using a limit argument, as follows.
 (a) Draw a non-tangent, but almost tangent line \(\ell_m \) through the point \((x_0, x_0^3) \) for a typical positive \(x \)-value \(x_0 \). Using a sketch of the graph of \(y = x^3 \), convince yourself that \(\ell \) crosses \(y = x^3 \) in three points (one of them with \(x \) negative).
 (b) Let \(m \) be the slope of \(\ell_m \). Verify that an equation for \(\ell_m \) is \(y = x_0^3 + m(x - x_0) \).
 (c) The crossing points of \(\ell_m \) and \(y = x^3 \) occur where \(x^3 = x_0^3 + m(x - x_0) \) (why?). Use the algebraic factorization \(x^3 - x_0^3 = (x - x_0)(x^2 + xx_0 + x_0^2) \) to write this equation as \((x - x_0)(x^2 + xx_0 + (x_0^2 - m)) = 0 \).
 (d) Observe that \(\ell_m \) becomes tangent to \(y = x^3 \) when two of the crossing points merge into one, that is, when the equation in (c) has \(x = x_0 \) as a double root. Since \(x_0 \) already occurs once as the root of the factor \(x - x_0 \), it will be a double root of the equation in (c) exactly when it is a root of \((x^2 + xx_0 + (x_0^2 - m)) = 0 \). When \(x_0 \) satisfies this equation, what must \(m \) be?