Instructions: Give brief, clear answers.

I. For sets \(A \) and \(B \), give the precise definitions of \(A \cap B \), \(A \cup B \), \(A \subseteq B \), and \(A = B \).

II. Prove that \(\emptyset, \{ \emptyset \} \subseteq \{ \emptyset, \{ \emptyset \} \} \) is false.

III. Disprove the following assertions.

1. For any three sets \(A, B, \) and \(C \), if \(A \cup C = B \cup C \), then \(A = B \).

2. For any three sets \(A, B, \) and \(C \), \(A \cup (B \cap C) = (A \cup B) \cap C \).

IV. Prove that if \(A \subseteq B \), then \(A \times C \subseteq B \times C \).

V. Prove that the function \(f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) defined by \(f(m, n) = m - n \) is surjective.

VI. Prove that the function \(g: [0, \infty) \to \mathbb{R} \) defined by \(g(x) = x^2 \) is injective.

VII. State Rolle’s Theorem. Use it to give a proof by contradiction showing that the function \(f: [0, \pi] \to [-1, 1] \) defined by \(f(x) = \cos(x) \) is injective.

VIII. For the function \(f: \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = \pi x - 13.4 \), find a formula for the composition \(f \circ f \circ f(x) \).

IX. Using the notation \(h: Y \to X \), define the range of \(h \), the preimage of \(x \) for an element \(x \in X \), the image of \(y \) for an element \(y \in Y \), and the graph of \(h \).

X. Simplify each of the following:

1. \((2, \infty) \cap (0, 3] \), assuming that the universal set is \(\mathcal{U} = \mathbb{R} \) (the answer should be written as a union of two intervals).

2. \(P(0) \cap P(1) \), where \(P(r) \) denotes the preimage of a number \(r \) for a function \(f: \mathbb{R} \to \mathbb{R} \).

XI. Prove that if \(a | b \) and \(b | c \), then \(a | c \).

XII. Prove that if \(a | c \) and \(b | d \), then \(ab | cd \).

XIII. State the Fundamental Theorem of Arithmetic.

XIV. Complete the following proof that there are infinitely many primes: “Suppose for contradiction that there are finitely many primes, say \(p_1, p_2, \ldots, p_k \). Put \(N = p_1 p_2 \cdots p_k + 1 \). Notice that no \(p_i \) divides \(N \). . . ”