Math 2513 homework

26. (10/24) Prove that if there exists d so that $c d \equiv 1 \bmod m$, then $\operatorname{gcd}(c, m)=1$. Hint: use the theorem that says $\operatorname{gcd}(a, b)$ is the least positive sum of multiples of a and b.
27. $(10 / 24)$ Prove that if $\operatorname{gcd}(c, m)=1$, then there exists d so that $c d \equiv 1 \bmod m$. Hint: use the theorem that says $\operatorname{gcd}(a, b)$ is the least positive sum of multiples of a and b.
28. (10/24) Use the previous problem to prove that if $a c \equiv b c \bmod m$ and $\operatorname{gcd}(c, m)=1$, then $a \equiv b \bmod m$.
29. (11/2) Let $m=s a+t b$ be the smallest positive sum of multiples of a and b. Rewrite the argument that we used in class to show that $m \mid a$ to obtain an argument that shows that $m \mid b$.
30. (11/2) Use the Euclidean algorithm to verify the following:
31. For all $n>0, \operatorname{gcd}(n, n+1)=1$.
32. $\operatorname{gcd}(n, n+2)$ is 1 if n is odd and is 2 if n is even.
33. $(11 / 2)$ Use the fact that $\operatorname{gcd}(a, b)$ is the smallest positive integer that is a sum of multiples of a and b to verify the following:
34. For all $n>0, \operatorname{gcd}(n, n+1)=1$.
35. $\operatorname{gcd}(n, n+2)$ is 1 if n is odd (write $n=2 k+1$ and show that 1 is a sum of multiples of $2 k+1$ and $2 k+3$) and is 2 if n is even.
36. (11/2) 3.2 \# 15, 17, 18, 23, 24, 27, 28-30
37. (11/2) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
38. Prove that if f and g are injective, then their composition $g \circ f: A \rightarrow C$ is also injective.
39. Prove that if f and g are surjective, then their composition $g \circ f: A \rightarrow C$ is also surjective.
40. Use the previous two facts to prove that if f and g are bijective, then their composition $g \circ f: A \rightarrow C$ is also bijective.
41. (11/2) $3.2 \# 31,36$
42. (11/2) 3.2 \# 38 (arrange the pairs (m, n) analogously to the way we arranged the positive fractions when proving that \mathbb{Q} is countable)
43. (11/2) 3.3 \# 20-21 (for each, give a proof using induction and a proof using congruence), 23 (let $P(n)$ be $\left.8 \mid(2 n-1)^{2}-1\right)$
