Math 2513 homework

17. (10/10) Take as known the fact that \(\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1] \) is bijective.

1. Sketch the graph of this function in the \(x-y \) plane.
2. Let \(\sin^{-1} \) be the inverse of this function. Tell the domain and codomain of \(\sin^{-1} \), and sketch the graph of \(\sin^{-1} \) in the \(x-y \) plane.
3. For which \(x \) is \(\sin(\sin^{-1}(x)) = x? \)
4. For which \(x \) is \(\sin^{-1}(\sin(x)) = x? \)
5. Draw a right triangle whose sides are 1, \(x \), and \(\sqrt{1-x^2} \), and label which angle is \(\sin^{-1}(x) \). Use the triangle to find an expression for \(\cos(\sin^{-1}(x)) \).
6. Use the identity \(\sin(\sin^{-1}(x)) = x \), the chain rule, and the expression for \(\cos(\sin^{-1}(x)) \) to obtain the formula \(\frac{d}{dx} \left(\sin^{-1}(x) \right) = \frac{1}{\sqrt{1-x^2}} \). Write this formula as an integration formula.

18. (10/17) 2.4 Prove part 3 of Theorem 1, \# 6, 7, 12, 13

19. (10/17) Be able to write out Euler’s proof that there are infinitely many primes from memory.

20. (10/17) 2.4 \# 16, 17, 28, 29

21. (10/24) 2.4 \# 30, 32, 38-45

22. (10/24) 2.4 \# 46

23. (10/24) For each integer \(n \) with \(0 \leq n < 12 \), use trial and error to find an integer \(m \) (with \(0 \leq m < 12 \)) for which \(5m \equiv n \mod 12 \).

24. (10/24) Use the fact that \(5 \cdot 5 \equiv 1 \mod 12 \) to solve the previous problem in a much better way.

25. (10/24) This problem will help you understand the theorem that if \(a \equiv b \mod m \) and \(c \equiv d \mod m \), then \(a + c \equiv b + d \mod m \). Define a junk relation \(a \text{R} b \) by \(a \text{R} b \iff (a - b)^2 \leq 25 \).

1. Prove that for all integers \(a \), \(a \text{R} a \).
2. Prove that for all integers \(a \) and \(b \), if \(a \text{R} b \) then \(b \text{R} a \).
3. Find counterexample to the following assertion:
 If \(a \text{R} b \) and \(c \text{R} d \), then \(a + c \equiv b + d \mod m \).
4. Prove that if \(a + c \equiv b + d \mod m \), then \(a \text{R} b \).
5. Let \(\sim \) be a relation on integers that satisfies \(a \sim a \) for all \(a \). Prove that if \(a \sim b \) and \(c \sim d \) imply that \(a + c \sim b + d \), then \(a + c \sim b + c \) implies that \(a \sim b \).
6. Disprove the converse of the previous statement.