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Name (please print)

I.
(20)

For each of the following series, use standard facts and/or convergence tests to determine whether the
series converges or diverges. Give only brief details, but indicate clearly what fact or test you are using,
and give at least the key steps in verifying that the test applies.

(i)
∑ 5n+2

32n∑ 5n+2

32n
=

∑
25

(
5
9

)n

, and this converges since it is a geometric series with −1 < 5
9 < 1

(one can also use the ratio test)

(ii)
∑ (−1)n

21/n

Since lim 21/n = 1, the terms do not limit to 0, and consequently the series diverges.

(iii)
∑

tan
( 1

n

)
lim

tan(1/n)
1/n

= lim
sin(1/n)

1/n
· 1
cos(1/n)

= 1, so by the Limit Comparison Test, this series has the

same convergence behavior as the harmonic series
∑ 1

n , which diverges.

(iv)
∑ 1

n + n cos2(n)

Since 0 < n + n cos2(n) ≤ 2n, we have 0 <
1
2n

≤ 1
n + n cos2(n)

. Since
∑ 1

2n
diverges, the

Comparison Test shows that
∑ 1

n + n cos2(n)
diverges.

(the Limit Comparison Test does not apply because lim

1
n + n cos2(n)

1
n

= lim
1

1 + cos2(n)
does

not exist)

(v)
∑ n4 − 7n3 + 1

n7 − n4 + 13n

lim

n4 − 7n3 + 1
n7 − n4 + 13n

1/n3
= lim

n7 − 7n6 + n3

n7 − n4 + 13n
= lim

1− 7/n + 1/n4

1− 1/n3 + 13/n6
= 1, so by the Limit Comparison

Test, this series has the same convergence behavior as the p-series
∑ 1

n3
, which converges.

II.
(4)

A power series of the form
∑

cn(x−π)n converges at x = 2 and diverges at x = 10. From this information,
what can be determined about its radius of convergence R?

The series is centered at x = π. Since it converges at x = 2, we know that π− 2 ≤ R. Since the series
diverges at x = 10, we know that R ≤ 10− π, thus π − 2 ≤ R ≤ 10− π.
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III.
(8)

Find the radius of convergence and interval of convergence of the power series
∞∑

n=1

(−2)n

√
n

(x + 3)n.

Applying the Ratio Test, we calculate

lim
| (−2)n+1
√

n+1
(x + 3)n+1|

| (−2)n
√

n
(x + 3)n|

= lim 2
√

n√
n + 1

|x + 3| = 2 |x + 3| .

Solving 2 |x + 3| < 1, we find that the series converges absolutely when −7
2 < x < −5

2 , and diverges
when x < −7

2 or −5
2 < x. Therefore the radius of convergence is 1

2 . To determine the exact interval
of convergence, we must examine the endpoints x = −7

2 and x = −5
2 .

When x = −7
2 , the series becomes

∞∑
n=1

(−2)n

√
n

(
− 1

2

)n

=
∞∑

n=1

1√
n

, which diverges since it is a p-series

with p < 1.

When x = −5
2 , the series becomes

∞∑
n=1

(−2)n

√
n

(
1
2

)n

=
∞∑

n=1

(−1)n

√
n

. Since this series is alternating and

the sequence
1√
n

is decreasing and limits to 0, the Alternating Series Test shows that it converges.

So the interval of convergence is −7
2

< x ≤ −5
2
.

IV.
(6)

Fill in the missing parts of the following argument: Suppose that
∑

|an| converges. Since 0 ≤ an + |an| ≤
2|an|, the Comparison Test shows that [fill in]. Since

∑
(an + |an|) and

∑
[fill in] converge, it follows that∑

[fill in] converges.

The argument establishes that absolutely convergent series convege. The missing parts are:

1.
∑

an + |an| converges

2. −|an| (|an| is acceptable)

3. an

V.
(5)

Let
∑

an be a series with all an > 0, and assume that lim an = 0. Use the Limit Comparison Test to show
that

∑
an converges if and only if

∑
ln(1 + an) converges.

Using l’Hôpital’s rule, we calculate that lim
ln(1 + an)

an
= lim

x→0

ln(1 + x)
x

= lim
x→0

1
1 + x

1
= 1, so the Limit

Comparison Test shows that the
∑

ln(1 + an) has the same convergence behavior as
∑

an.
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VI.
(9)

Let {an} be a sequence. The infinite product
∞∏

n=1

an is (not surprisingly) defined to be lim
n→∞

pn where pn is

the partial product defined by pn =
n∏

i=1

ai.

1. Calculate
∞∏

n=1

n

n + 1
.

We have pn = 1
2

2
3

3
4 · · ·

n
n+1 = 1

n+1 , so
∞∏

n=1

n

n + 1
= lim

1
n + 1

= 0.

2. Show that
∞∏

n=1

2
1

nα converges if and only if α > 1.

We have
pn = 2

1
1 2

1
2α 2

1
3α · · · 2

1
nα = 2

Pn
k=1

1
kα .

Since
∞∏

n=1

1
nα

converges exactly when α > 1, its partial sums
∑n

k=1
1

kα have a finite limit exactly when

α > 1. So the partial products pn, and consequently the infinite product, converge exactly when α > 1.

3. Assuming that all an > 0 and lim an = 0, show that
∞∏

n=1

(1 + an) converges if and only if
∑

an converges.

We have pn =
n∏

k=1

(1 + ak), so ln(pn) =
∑n

k=1 ln(1 + ak). These are the partial sums of the series∑∞
n=1 ln(1 + an). By problem V above, this series converges exactly when the series

∑
an converges.

So its partial sums ln(pn), hence also the partial products pn, converge exactly when
∑

an converges.


