I. The sequence whose $n^{t h}$ term is $\frac{(-1)^{n} n^{2}}{1+n^{3}}$ converges to 0 . State the Squeeze Principle for limits of sequences, (6) and use it to verify that this sequence converges to 0 .

The Squeeze Principle says that if $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ are sequences whose terms satisfy $a_{n} \leq b_{n} \leq c_{n}$, and $\lim a_{n}=L$ and $\lim c_{n}=L$, then $\lim b_{n}$ exists and equals L.
We have the estimate

$$
\frac{n^{2}}{1+n^{3}} \leq \frac{n^{2}}{n^{3}}=\frac{1}{n}
$$

so

$$
-\frac{1}{n} \leq \frac{(-1)^{n} n^{2}}{1+n^{3}} \leq \frac{1}{n}
$$

Since $\lim -\frac{1}{n}$ and $\lim \frac{1}{n}$ are both 0 , the Squeeze Principle shows that $\lim \frac{(-1)^{n} n^{2}}{1+n^{3}}$ is 0 as well.
II. Sketch the following curve and indicate with an arrow the direction in which the curve is traced as the (5) parameter moves: $x=\cosh (t), y=\sinh (t)$. Give a brief explanation of why this is the graph.

Since $\cosh ^{2}(t)-\sinh ^{2}(t)=1$, the points on this curve lie on the hyperbola $x^{2}-y^{2}=1$. Since $x=\cosh (t)>0$, they all lie to the right of the x-axis. So the graph is as shown in the figure below. Also, as t increases, $y=\sinh (t)$ increases, so the direction of motion is as shown.

III. The graph of a certain equation $r=f(\theta)$ is (5) shown at the right, in a rectangular θ - r coordinate system. In an $x-y$ coordinate system, make a reasonably accurate graph of the polar equation $r=f(\theta)$ for this function.

IV. The graph of a certain polar equation $r=f(\theta)$ is shown at the right, in an rectangular $x-y$ coordinate system. In a rectangular $\theta-r$ coordinate system, make a reasonably accurate graph of the rectangular equation $r=f(\theta)$ for this function. Assume that $r=1$ when $\theta=0$.

V. Give (without extensive verification) examples of the following:
(6)
(a) A sequence a_{n} such that $\left\{\left|a_{n}\right|\right\}$ is monotonic, but $\left\{a_{n}\right\}$ is not monotonic.
$\left\{\left(-\frac{2}{3}\right)^{n}\right\}$, whose sequence of absolute values $\left\{\left(\frac{2}{3}\right)^{n}\right\}$ is decreasing.
(b) A sequence a_{n} such that $\left\{a_{n}\right\}$ is monotonic, but $\left\{\left|a_{n}\right|\right\}$ is not monotonic.
$\{-1,0,1,2,3,4, \ldots\}$, an increasing sequence whose sequence of absolute values $\{1,0,1,2,3,4, \ldots\}$ is not monotonic.
VI. A certain decreasing sequence $\left\{a_{n}\right\}$ has all $a_{n}>0$. Explain how one knows that it must converge.

Since all terms are positive, the sequence is bounded below by $M=0$. Since it is also decreasing, the Monotonic Sequence Theorem guarantees that it converges.
VII. The figure to the right shows the graph of a polar equation $r=f(\theta)$ in the $x-y$ plane, and an arrow representing the differential of arclength $d s$, express the two differentials indicated by $?$ in terms of the differential $d \theta$, and then use them and the Pythagorean theorem to calculate $d s$ in terms of $d \theta$.

The upper question mark is the change in r corresponding to $d \theta$, that is, $\frac{d r}{d \theta} d \theta$. The lower one is the arc subtended at radius r by an angle $d \theta$, that is, $r d \theta$. Using the Pythagorean Theorem, we find that

$$
d s^{2}=\left(\frac{d r}{d \theta} d \theta\right)^{2}+(r d \theta)^{2}=\left(r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right) d \theta^{2}
$$

so $d s=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$.
VIII. The line $y=x$ is parameterized by $x=t^{3} / 3, y=t^{3} / 3$ for t in the domain of all real numbers.
(a) Calculate $d s$ and use it to find the distance traveled between times $t=-1$ and $t=1$.
$d s^{2}=d x^{2}+d y^{2}=\left(t^{2} d t\right)^{2}+\left(t^{2} d t\right)^{2}=2 t^{4} d t^{2}$, so $d s=\sqrt{2}\left|t^{2}\right| d t=\sqrt{2} t^{2} d t$, using the fact that $t^{2} \geq 0$. Integrating $d s$, we find the distance traveled to be $\int_{-1}^{1} \sqrt{2} t^{2} d t=\frac{2 \sqrt{2}}{3}$.
(b) The chain rule $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$ gives the expression $\frac{d y}{d x}=\frac{t^{2}}{t^{2}}$. This expression is undefined when $t=0$. Using the interpretation of the parametric equations as describing the motion of a point P that moves with coordinates $(x, y)=\left(t^{3} / 3, t^{3} / 3\right)$, explain why it is reasonable for $\frac{d y}{d x}$ to be undefined when $t=0$.

At the moment $t=0$, the point is momentarily stopped (since its velocity $\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}}=$ $\sqrt{2} t^{2}$ is 0 when $t=0$. But $\frac{d y}{d x}$ in terms of t is the ratio of the vertical velocity to the horizontal velocity, which measures the direction of motion. Since P is stopped at $t=0$, it does not really have a well-defined direction of motion at that instant.
IX. A point P moves according to the polar parametric equations $\theta=\sin (t), r=t$. Describe the motion for $0 \leq t \leq 314.159$. A sketch will certainly be helpful, as will the fact that 1 radian is approximately 57 degrees.

Since $r=t$, the distance from the origin increases uniformly. But the polar angle $\theta=\sin (t)$ oscillates between 1 radian and -1 radian, approximately 50 times. This gives a graph like the one shown here:

