I. The sequence whose n^{th} term is $\frac{(-1)^n n^2}{1+n^3}$ converges to 0. State the Squeeze Principle for limits of sequences, (6) and use it to verify that this sequence converges to 0.

> The Squeeze Principle says that if $\{a_n\}, \{b_n\}$, and $\{c_n\}$ are sequences whose terms satisfy $a_n \leq b_n \leq c_n$, and $\lim a_n = L$ and $\lim c_n = L$, then $\lim b_n$ exists and equals L. We have the estimate

Name (please print)

 \mathbf{SO}

$$\frac{n^2}{1+n^3} \le \frac{n^2}{n^3} = \frac{1}{n} ,$$
$$-\frac{1}{n} \le \frac{(-1)^n n^2}{1+n^3} \le \frac{1}{n} .$$

Since $\lim -\frac{1}{n}$ and $\lim \frac{1}{n}$ are both 0, the Squeeze Principle shows that $\lim \frac{(-1)^n n^2}{1+n^3}$ is 0 as well.

II. Sketch the following curve and indicate with an arrow the direction in which the curve is traced as the (5) parameter moves: $x = \cosh(t)$, $y = \sinh(t)$. Give a brief explanation of why this is the graph.

Since $\cosh^2(t) - \sinh^2(t) = 1$, the points on this curve lie on the hyperbola $x^2 - y^2 = 1$. Since $x = \cosh(t) > 0$, they all lie to the right of the *x*-axis. So the graph is as shown in the figure below. Also, as *t* increases, $y = \sinh(t)$ increases, so the direction of motion is as shown.

III. The graph of a certain equation $r = f(\theta)$ is (5) shown at the right, in a rectangular θ -r coordinate system. In an x-y coordinate system, make a reasonably accurate graph of the polar equation $r = f(\theta)$ for this function.

y

х

IV. The graph of a certain polar equation $r = f(\theta)$ is (5) shown at the right, in an rectangular *x-y* coordinate system. In a rectangular θ -*r* coordinate system, make a reasonably accurate graph of the rectangular equation $r = f(\theta)$ for this function. Assume that r = 1when $\theta = 0$.

r

- V. Give (without extensive verification) examples of the following:
- (6)

(4)

- (a) A sequence a_n such that $\{|a_n|\}$ is monotonic, but $\{a_n\}$ is not monotonic.
 - $\left\{\left(-\frac{2}{3}\right)^n\right\}$, whose sequence of absolute values $\left\{\left(\frac{2}{3}\right)^n\right\}$ is decreasing.
- (b) A sequence a_n such that $\{a_n\}$ is monotonic, but $\{|a_n|\}$ is not monotonic.

 $\{-1, 0, 1, 2, 3, 4, ...\}$, an increasing sequence whose sequence of absolute values $\{1, 0, 1, 2, 3, 4, ...\}$ is not monotonic.

VI. A certain decreasing sequence $\{a_n\}$ has all $a_n > 0$. Explain how one knows that it must converge.

Since all terms are positive, the sequence is bounded below by M = 0. Since it is also decreasing, the Monotonic Sequence Theorem guarantees that it converges.

VII. The figure to the right shows the graph of a po-(7) lar equation $r = f(\theta)$ in the x-y plane, and an arrow representing the differential of arclength ds, express the two differentials indicated by ? in terms of the differential $d\theta$, and then use them and the Pythagorean theorem to calculate ds in terms of $d\theta$.

The upper question mark is the change in r corresponding to $d\theta$, that is, $\frac{dr}{d\theta}d\theta$. The lower one is the arc subtended at radius r by an angle $d\theta$, that is, $r d\theta$. Using the Pythagorean Theorem, we find that

$$ds^{2} = \left(\frac{dr}{d\theta} d\theta\right)^{2} + (r d\theta)^{2} = \left(r^{2} + \left(\frac{dr}{d\theta}\right)^{2}\right) d\theta^{2} ,$$

so $ds = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$

(8)

VIII. The line y = x is parameterized by $x = t^3/3$, $y = t^3/3$ for t in the domain of all real numbers.

(a) Calculate ds and use it to find the distance traveled between times t = -1 and t = 1.

 $ds^2 = dx^2 + dy^2 = (t^2 dt)^2 + (t^2 dt)^2 = 2t^4 dt^2$, so $ds = \sqrt{2}|t^2|dt = \sqrt{2}t^2 dt$, using the fact that $t^2 \ge 0$. Integrating ds, we find the distance traveled to be $\int_{-1}^1 \sqrt{2}t^2 dt = \frac{2\sqrt{2}}{3}$.

(b) The chain rule $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ gives the expression $\frac{dy}{dx} = \frac{t^2}{t^2}$. This expression is undefined when t = 0. Using the interpretation of the parametric equations as describing the motion of a point *P* that moves with coordinates $(x, y) = (t^3/3, t^3/3)$, explain why it is reasonable for $\frac{dy}{dx}$ to be undefined when t = 0.

At the moment t = 0, the point is momentarily stopped (since its velocity $\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} = \frac{du}{dt}$

 $\sqrt{2}t^2$ is 0 when t = 0. But $\frac{dy}{dx}$ in terms of t is the ratio of the vertical velocity to the horizontal velocity, which measures the *direction* of motion. Since P is stopped at t = 0, it does not really have a well-defined direction of motion at that instant.

IX. A point P moves according to the *polar* parametric equations $\theta = \sin(t)$, r = t. Describe the motion for (5) $0 \le t \le 314.159$. A sketch will certainly be helpful, as will the fact that 1 radian is approximately 57 degrees.

Since r = t, the distance from the origin increases uniformly. But the polar angle $\theta = \sin(t)$ oscillates between 1 radian and -1 radian, approximately 50 times. This gives a graph like the one shown here:

