
Mathematics 2433-001H
Final Examination
December 15, 2005

Name (please print)

I.
(8)

For the quadric surface: −x2 + y2 − z2 = 4

1. In the yz-plane, make a reasonably accurate sketch of the traces with x = k, for appropriate ranges of k.

See graphs download.

2. In the xz-plane, make a reasonably accurate sketch of the traces with y = k, for appropriate ranges of k.

See graphs download.

3. In an xyz-coordinate system, make a reasonably accurate sketch of the quadric surface −x2 + y2 − z2 = 4.

See graphs download.

II.
(8)

In four xyz-coordinate systems, sketch the following:

1. The object given in cylindrical coordinates by r2 = r.

See graphs download.

2. The object given in cylindrical coordinates by z2 + r2 = 1.

See graphs download.

3. The object given in spherical coordinates by 3π/4 ≤ φ ≤ π.

See graphs download.

4. The object given in spherical coordinates by ρ = φ2, 0 ≤ φ ≤ π.

See graphs download.

III.
(4)

In two xy-coordinate systems, sketch the curves given by the following vector equations:
~r(t) = (x0 + at)~ı + (y0 + bt)~ for −1 ≤ t ≤ 0, ~r(t) = cosh(t)~ı + sinh(t)~ for all t.

See graphs download.
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IV.
(12)

Regard the helix x = cos(2t), y = t, z = sin(2t) as a vector-valued function of t.

1. By calculation, verify that the unit tangent vector ~T (t) to the curve is
−2 sin(2t)/

√
5~ı + 1/

√
5~ + 2 cos(2t)/

√
5~k.

Regarded as a vector-valued function of t, the helix is ~r(t) = cos(2t)~ı + t~ + sin(2t)~k, and

~v(t) = ~r ′(t) = −2 sin(2t)~ı + ~ + 2 cos(2t)~k

‖ v(t) ‖ =
√

4 sin2(2t) + 1 + 4 cos2(2t) =
√

5

~T (t) = ~v(t)/‖~v(t) ‖ = −2 sin(2t)/
√

5~ı + 1/
√

5~ + 2 cos(2t)/
√

5~k .

2. Calculate the unit normal vector ~N(t) to the curve.

~n(t) = ~T ′(t) = −4 cos(2t)/
√

5~ı− 4 sin(2t)/
√

5

‖~n(t) ‖ =
√

16 cos2(2t)/5 + 16 sin2(2t)/5 = 4/
√

5

~N(t) = ~n(t)/‖~n(t) ‖ = cos(2t)~ı− sin(2t)~k .

3. Use the formula κ =
‖~v(t)× ~a(t) ‖
‖~v(t) ‖3

to calculate the curvature.

~a(t) = ~v ′(t) = −4 cos(2t)~ı− 4 sin(2t)~k

~v(t)× ~a(t) = −4 sin(2t)~ı− 8~ + 4 cos(2t)~k

‖~v(t)× ~a(t) ‖ = 4
√

5

‖~v(t) ‖ =
√

5

κ =
4
√

5
√

5
3 =

4
5

4. Use the formula κ =
‖ ~T ′(t) ‖
‖~r ′(t) ‖

to calculate the curvature.

κ =
‖ ~T ′(t) ‖
‖~r ′(t) ‖

=

√
16/5√

5
=

4
5

5. Use the formula κ =
∥∥∥∥ d~T

ds

∥∥∥∥ to calculate the curvature.

We have
ds

dt
= ‖~v(t) ‖ =

√
5, so

κ =
∥∥∥∥ d~T

ds

∥∥∥∥ =
∥∥∥∥ d~T

dt

/
ds

dt

∥∥∥∥ =
1√
5

∥∥∥∥ d~T

dt

∥∥∥∥ =
1√
5

√
16/5 =

4
5

V.
(3)

Bearing in mind that 1 radian is approximately 60 degrees (actually, around 57 degrees), sketch the curve
given by these parametric equations in spherical coordinates: ρ = 1, θ = t/(200π), φ = π/2 − sin(t) for
0 ≤ t ≤ 200π.

See graphs download.
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VI.
(4)

The figure to the right shows the graph of a
polar equation r = f(θ) in the x-y plane. Use
it to determine ds in terms of dθ.

From the Pythagorean Theorem, we have

ds2 = (r dθ)2 + dr2 =
(
r2 +

(
dr

dθ

)2)
dθ 2 ,

so ds =

√
r2 +

(
dr

dθ

)2

dθ.

VII.
(3)

State the Squeeze Principle for limits of sequences.

If {an}, {bn}, and {cn} are sequences with an ≤ bn ≤ cn for all (sufficiently large) n, and lim
n→∞

an and
lim

n→∞
cn exist and are equal, then lim

n→∞
bn exists and equals lim

n→∞
an.

VIII.
(9)

For each of the following series, use standard facts and/or convergence tests to determine whether the
series converges or diverges. Give only brief details, but indicate clearly what fact or test you are using,
and give at least the key steps in verifying that the test applies.

(i)
∑ 1

n2e−n

We have lim
n→∞

1
n2e−n

= lim
n→∞

en

n2
= lim

x→∞

ex

x2
= lim

x→∞

ex

2x
= lim

x→∞

ex

2
= ∞. Since the terms do not

limit to 0, the series diverges.

(ii)
∑

tan3(1/
√

n)

We have

lim
tan3(1/

√
n)

1/n3/2
= lim

(
tan(1/

√
n)

1/
√

n

)3

= lim
(

1
cos(1/

√
n)

· sin(1/
√

n)
1/
√

n

)3

=
1
1
· 1 = 1 .

Since
∑ 1

n3/2 converges, the Comparison Test shows that
∑

tan3(1/
√

n) also converges.

(iii)
∑ n!

2 · 5 · 8 · · · (3n + 2)
Applying the Ratio Test, we calculate

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)!
2 · 5 · 8 · · · (3n + 2) · (3n + 5)

n!
2 · 5 · 8 · · · (3n + 2)

= lim
n→∞

(n + 1)!
n!

· 1
3n + 5

= lim
n→∞

n + 1
3n + 5

=
1
3

,

so the Ratio Test shows that this series converges.

IX.
(3)

A power series of the form
∑

cn(x+π)n converges at x = 0 and diverges at x = π. From this information,
what can be determined about its radius of convergence?

The power series is centered at a = −π, so the radius of convergence is at least |0− (−π)| = π and no
more than |π − (−π)| = 2π.
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X.
(3)

Fill in the missing parts of the following argument: Suppose that
∑

|an| converges. Since 0 ≤ an + |an| ≤
2|an|, the Comparison Test shows that [fill in]. Since

∑
(an + |an|) and

∑
[fill in] converge, it follows that∑

[fill in] converges.

The argument establishes that absolutely convergent series convege. The missing parts are:
1.

∑
an + |an| converges

2. −|an| (|an| is acceptable)
3. an

XI.
(12)

In the following questions, use the power series tan−1(x) =
∞∑

n=0

(−1)n x2n+1

2n + 1
.

1. For what values of x does the series converge?

Applying the Ratio Test, we calculate

lim
|an+1|
|an|

= lim

|x|2n+3

2n + 3
|x|2n+1

2n + 1

= |x|2 lim
2n + 1
2n + 3

= x2 ,

so the Ratio Test shows that this series converges (absolutely) when x2 < 1, that is, for −1 < x < 1
and diverges when x2 > 1, that is, when x < −1 and 1 < x. For x = ±1, the series becomes ±

∑ (−1)n

2n+1 ,
which converges by the Alternating Series Test (but it only converges conditionally, by comparison with
the harmonic series). In summary, the series converges for −1 ≤ x ≤ 1.

2. Calculate lim
x→0

2 tan−1(x/2)− x

x3
.

lim
x→0

2 tan−1(x/2)− x

x3
= lim

x→0

2
( ∑∞

n=0(−1)n (x/2)2n+1

2n + 1

)
− x

x3
= lim

x→0

2
(

x

2
− x3

8 · 3
+

x5

32 · 5
− · · · )− x

x3

= lim
x→0

(
x− x3

4 · 3
+

x5

16 · 5
− · · · )− x

x3
= lim

x→0

− x3

4 · 3
+

x5

16 · 5
− · · ·

x3
= lim

x→0
− 1

4 · 3
+

x2

16 · 5
− · · · = − 1

12
.

3. Evaluate
∞∑

n=0

(−1)n

3n(2n + 1)
(Hint: 3n =

(
√

3)2n+1

√
3

)

∞∑
n=0

(−1)n

3n(2n + 1)
=
√

3
∞∑

n=0

(−1)n

(
1√
3

)2n+1

2n + 1
=
√

3 tan−1

(
1√
3

)
=

π

2
√

3
.

4. Find a numerical series whose value is
∫ 1/2

0

tan−1(x)
x

dx (but do not try to calculate the numerical value of

the series).

∫ 1/2

0

tan−1(x)
x

dx =
∫ 1/2

0

∞∑
n=0

(−1)n x2n+1

2n + 1

x
dx =

∫ 1/2

0

∞∑
n=0

(−1)n x2n

2n + 1
dx

=
∞∑

n=0

(−1)n x2n+1

(2n + 1)2

∣∣∣∣1/2

0

=
∞∑

n=0

(−1)n

22n+1(2n + 1)2
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XII.
(6)

Find an equation for the plane that contains the lines whose vector equations are
~r(t) = (11− t)~ı + (11 + t)~ + 2t~k and ~r(t) = (11− 2t)~ı + (11 + t)~ + t~k.

The direction vectors are ~v = −~ı + ~ + 2~k and ~w = −2~ı + ~ + ~k. A normal vector to the plane is
~v× ~w = −~ı− 3~+~k. A point in the plane is when t = 0 in either line, that is, (11, 11, 0). An equation
for the plane is (−1)(x− 11) + (−3)(y − 11) + 1(z − 0) = 0, that is, x + 3y − z = 44.

XIII.
(5)

Tell (without proof or explanation) the convergence behavior of the geometric sequence {rn} for all possible
values of r. At values where it converges, tell the limit. At values where it diverges, tell whether or not it
is bounded. At values where it is unbounded, tell whether it diverges to ∞, diverges to −∞, or neither of
these.

It diverges when r < −1, but neither to ∞ not to −∞.
It diverges but is bounded when r = −1 (by alternating between 1 and −1),
It converges to 0 when −1 < r < 1.
It converges to 1 when r = 1.
It diverges to ∞ when 1 < r.


