Mathematics 5853 Name (please print)
Examination I1
November 9, 2004

Instructions: Give brief, clear answers.
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Prove that every compact subset of a Hausdorff space is closed.

Let C be a compact subset of a Hausdorff space X. Let z € X — C. For each z € C, choose disjoint open
sets U, and V; with ¢ € U, and 2z € V. The collection of all U, contains C, so since C is compact, there is
a finite subcollection with C C Uy, U...UU,. Let V =N, V;,. The V is an open neighborhood of z, and
VNC CVNULUy,) =Uk (VNU,) CUL, (Ve NUg,) =0, that is, z € V C X — C. Therefore X — C is
open.

Define what it means to say that a space X is locally compact. Define the topology on the 1-point compact-
ification Xt = X U {c0}, and prove that if X is locally compact Hausdorff, then X is Hausdorff.

X is locally compact if for every z € X, there exists a compact set C in X that contains an open neighborhood
of z. A set U is open in X when either (1) U C X and U is open in X, or (2) oo € U and X+ — U is
compact. Suppose X is locally compact Hausdorff, and let z,y € X+ with z # y. If z,y € X, then since X
is Hausdorff there are disjoint open sets U and V in X with z € U and y € V, and U and V are open in
X1 as well. If one of = or y, say y, equals 0o, then select a compact subset C' in X that contains an open
neighborhood U of z. Taking V = Xt — C, we have that U and V are disjoint open sets in X with z € U
and co € V.

Let U be an open cover of a metric space (X, d). Define what it means to say that the number ¢ is a Lebesgue
number for U.

A number ¢ is a Lebesgue number for an open cover U of X if every subset of X of diameter less than ¢
is contained in some element of U (where the diameter of a subset A is defined to be the infimum of the
distances between pairs of points in A).

Prove that if X is locally path-connected, then it has a basis that consists of path-connected sets.

Define B to be the collection of path-connected open subsets of X. The sets of B are open by definition.
Suppose that z € X and U is an open neighborhood of z. Since X is locally connected, there exists a
path-connected open neighborhood V of z with x € V' C U. By the Basis Recognition Theorem, B is a basis
for the topology on X.

Briefly describe the stereographic projection homeomorphism between R? and S? — {(0,0,1)} (formulas are
not necessary, but a good picture is necessary). On a second picture of S?, indicate the subsets of S? that
correspond to the circles 22 4- 42 = n? (for n € N) of R?, and indicate the subset of S that corresponds to
the z-axis of R2,

See last page.
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Let X be a connected metric space.

Suppose that the ‘connected metric space (X,d) contains two points a and b with d(a,b) = 2. Prove that
there exists a point ¢ € X for which d(a,c) = 1. Hint: use the continuous function D: X — R defined by

D(z) = d(a,z).
Prove that there exists a point ¢ € X with d(a,c) = d(b,c).
Show by example that there need not exist a point such that d(a,c) = d(b,c) = 1.

1. Define D: X — R by D(z) = d(a,z) (D is continuous since it is the restriction of d: X x X — R to the
subspace {a} x X of X x X). We have D(a) =0 and D(b) = 2. Since X is connected, the Intermediate
Value Theorem implies that there exists ¢ € X with D(c) = 1, that is, d(a,c) = 1.

2. This time, define f: X — R by f(z) = d(a,z) — d(b,z). We have f(a) = —2 and f(b) = 2. Since X
is connected, the Intermediate Value Theorem implies that there exists ¢ € X with f(c) = 0, that is,
d(a,c) = d(b,c).

3. In the unit circle S! in R2?, the points (1,0) and (—1,0) are at distance 2, but the circle contains no
point at distance 1 from both of these points.

Let (R, £) be R with the lower-limit topology.

Prove that (R, £) x (R, £) is separable. Hint: Q x Q is countable.
Find a subspace of (R, £) x (R, £) that is not separable.

1. Q@ x Q is countable. Let B be the basis for (R, £) consisting of all half-open intervals [a,b). Then, the
collection of all sets of the form [a,b) x [c,d) is a basis for the product topology on (R, L) x (R, £). Let
[a,b) x [c,d) be any one of these sets. Choose rational numbers r € (a,b) and s € (¢,d). Then (r,s) is
a point of Q x Q contained in [a,b) X [c,d). We have shown that every basis element contains a point
of Q@ x Q, so @ x Q is dense.

2. Let A= {(z,—z) |z € R} C (R L) x (R, £). Each point (z, —z) of A is open in the subspace topology,
since {(z,—z) = AN[z,z+ 1) x [z, +1). So A is uncountable and has the discrete topology. Any
countable subset of A is closed, so is not dense, and therefore A is not separable.

Prove that if X and Y are path-connected spaces, then X x Y is path-connected.

Let (zo,%0) and (z1,y1) be any two points of X x Y. Since X and Y are path-connected, there exists paths
a: T = X from zg to z; and B: I — X from yo to y;. Define 8: I — X x Y by S(¢) = (a(t),5(t)). It
is continuous because its coordinate functions are o and 3, which are continuous, and §(0) = (z¢,y0) and

B(1) = (z1,91)-

Prove that every continuous map from R to Q is constant.

The image of R under any continuous map must be connected. Since the only connected subsets of Q are its
points, the image of R under any continuous map must be a single point, that is, the map must be constant.

Alternatively, suppose f: R — Q is nonconstant, so f(q1) < f(gz) for some ¢1,q2 € Q. Follow f by the
inclusion to obtain g: R — Q C R. Choose an irrational number r with f(g;) < 7 < f(g2). Since the domain
R of g is connected, the Intermediate Value Theorem implies that there exists z € R with g(z) = r, but this
is impossible since g(z) must be a rational number.
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Prove or give a counterexample to each of the following assertions.

. Let (X,d) be a metric space with the property that for every € > 0, there is a finite covering of X by balls

of radius . Then X is compact.

False, for example the open unit interval (0,1) has a finite covering by balls of radius € for any ¢ > 0
(choose n € N with 1/n < € and take the e-balls centered at m/n, m € Nand 0 < m < n.)

. The cofinite topology on R X R equals the product topology (R, cofinite) x (IR, cofinite).

False, for example the subset {0} X R is a product of a two closed subsets of (R, cofinite), so is closed
in the product topology on (R, cofinite) X (R, cofinite). But is is neither finite nor all of R x R, so it is
not closed in the cofinite topology on R x R.

. If there is a subspace A of X for which there exists an unbounded continuous function from A to R, then

there exists an unbounded continuous function from X to R

False, for example the function f(z) = 1/z is a continuous unbounded on the subspace (0,1] of [0, 1],
but [0, 1] has no unbounded continuous function, because it is compact.

. If every connected subspace of X is compact, then X is compact.

False, for example every connected subspace of Q is a single point, so is compact, but Q is not compact.

. If every compact subspace of X is connected, then X is connected.

True. We will prove the contrapositive. Suppose X is not connected, and let X = UUV be a separation.
Since U and V are nonempty, we can choose points z € U and y € V, and z # y since UNV = (.
The subspace {z,y} is compact, since any finite space is compact, and has the discrete topology, since
UN{z,y} = {z} and VN{z,y} = {y} are open, so {z,y} is not connected. Therefore not every compact
subspace of X is connected.

V. Briefly describe the stereographic projection homeomorphism between R? and S? — {(0,0,1)} (formulas are not
necessary, but a good picture is necessary). On a second picture of S?, indicate the subsets of S? that correspond
to the circles 22 + y% = n? (for n € N) of R?, and indicate the subset of S? that corresponds to the z-axis of R2.
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