Mathematics 5853	Name (please print)	
Examination II		
November 0, 2004		

Instructions: Give brief, clear answers.

I. Prove that every compact subset of a Hausdorff space is closed.

(10)

Let C be a compact subset of a Hausdorff space X. Let $z \in X - C$. For each $x \in C$, choose disjoint open sets U_x and V_x with $x \in U_x$ and $z \in V_x$. The collection of all U_x contains C, so since C is compact, there is a finite subcollection with $C \subseteq U_{x_1} \cup \ldots \cup U_{x_n}$. Let $V = \bigcap_{i=1}^n V_{x_i}$. The V is an open neighborhood of z, and $V \cap C \subseteq V \cap (\bigcup_{i=1}^n U_{x_i}) = \bigcup_{i=1}^n (V \cap U_{x_i}) \subseteq \bigcup_{i=1}^n (V_{x_i} \cap U_{x_i}) = \emptyset$, that is, $z \in V \subseteq X - C$. Therefore X - C is open.

- II. Define what it means to say that a space X is locally compact. Define the topology on the 1-point compact(10) ification $X^+ = X \cup \{\infty\}$, and prove that if X is locally compact Hausdorff, then X^+ is Hausdorff.
 - X is locally compact if for every $x \in X$, there exists a compact set C in X that contains an open neighborhood of x. A set U is open in X^+ when either (1) $U \subseteq X$ and U is open in X, or (2) $\infty \in U$ and $X^+ U$ is compact. Suppose X is locally compact Hausdorff, and let $x, y \in X^+$ with $x \neq y$. If $x, y \in X$, then since X is Hausdorff there are disjoint open sets U and V in X with $x \in U$ and $y \in V$, and U and V are open in X^+ as well. If one of x or y, say y, equals ∞ , then select a compact subset C in X that contains an open neighborhood U of x. Taking $V = X^+ C$, we have that U and V are disjoint open sets in X^+ with $x \in U$ and $\infty \in V$.
- III. Let \mathcal{U} be an open cover of a metric space (X, d). Define what it means to say that the number δ is a Lebesgue number for \mathcal{U} .

A number δ is a Lebesgue number for an open cover \mathcal{U} of X if every subset of X of diameter less than δ is contained in some element of \mathcal{U} (where the diameter of a subset A is defined to be the infimum of the distances between pairs of points in A).

- **IV**. Prove that if X is locally path-connected, then it has a basis that consists of path-connected sets.
- Define \mathcal{B} to be the collection of path-connected open subsets of X. The sets of \mathcal{B} are open by definition. Suppose that $x \in X$ and U is an open neighborhood of x. Since X is locally connected, there exists a path-connected open neighborhood V of x with $x \in V \subseteq U$. By the Basis Recognition Theorem, \mathcal{B} is a basis for the topology on X.
- V. Briefly describe the stereographic projection homeomorphism between \mathbb{R}^2 and $S^2 \{(0,0,1)\}$ (formulas are not necessary, but a good picture is necessary). On a second picture of S^2 , indicate the subsets of S^2 that correspond to the circles $x^2 + y^2 = n^2$ (for $n \in \mathbb{N}$) of \mathbb{R}^2 , and indicate the subset of S^2 that corresponds to the x-axis of \mathbb{R}^2 .

See last page.

VI. Let X be a connected metric space.

(10)

- 1. Suppose that the connected metric space (X,d) contains two points a and b with d(a,b)=2. Prove that there exists a point $c \in X$ for which d(a,c)=1. Hint: use the continuous function $D: X \to \mathbb{R}$ defined by D(x)=d(a,x).
- 2. Prove that there exists a point $c \in X$ with d(a, c) = d(b, c).
- 3. Show by example that there need not exist a point such that d(a,c) = d(b,c) = 1.
 - 1. Define $D: X \to \mathbb{R}$ by D(x) = d(a, x) (D is continuous since it is the restriction of $d: X \times X \to \mathbb{R}$ to the subspace $\{a\} \times X$ of $X \times X$). We have D(a) = 0 and D(b) = 2. Since X is connected, the Intermediate Value Theorem implies that there exists $c \in X$ with D(c) = 1, that is, d(a, c) = 1.
 - 2. This time, define $f: X \to \mathbb{R}$ by f(x) = d(a,x) d(b,x). We have f(a) = -2 and f(b) = 2. Since X is connected, the Intermediate Value Theorem implies that there exists $c \in X$ with f(c) = 0, that is, d(a,c) = d(b,c).
 - 3. In the unit circle S^1 in \mathbb{R}^2 , the points (1,0) and (-1,0) are at distance 2, but the circle contains no point at distance 1 from both of these points.

VII. Let $(\mathbb{R}, \mathcal{L})$ be \mathbb{R} with the lower-limit topology.

(10)

- 1. Prove that $(\mathbb{R}, \mathcal{L}) \times (\mathbb{R}, \mathcal{L})$ is separable. Hint: $\mathbb{Q} \times \mathbb{Q}$ is countable.
- 2. Find a subspace of $(\mathbb{R}, \mathcal{L}) \times (\mathbb{R}, \mathcal{L})$ that is not separable.
 - 1. $\mathbb{Q} \times \mathbb{Q}$ is countable. Let \mathcal{B} be the basis for $(\mathbb{R}, \mathcal{L})$ consisting of all half-open intervals [a, b). Then, the collection of all sets of the form $[a, b) \times [c, d)$ is a basis for the product topology on $(\mathbb{R}, \mathcal{L}) \times (\mathbb{R}, \mathcal{L})$. Let $[a, b) \times [c, d)$ be any one of these sets. Choose rational numbers $r \in (a, b)$ and $s \in (c, d)$. Then (r, s) is a point of $\mathbb{Q} \times \mathbb{Q}$ contained in $[a, b) \times [c, d)$. We have shown that every basis element contains a point of $\mathbb{Q} \times \mathbb{Q}$, so $\mathbb{Q} \times \mathbb{Q}$ is dense.
 - 2. Let $A = \{(x, -x) \mid x \in \mathbb{R}\} \subset (\mathbb{R}, \mathcal{L}) \times (\mathbb{R}, \mathcal{L})$. Each point (x, -x) of A is open in the subspace topology, since $\{(x, -x) = A \cap [x, x+1) \times [x, x+1)$. So A is uncountable and has the discrete topology. Any countable subset of A is closed, so is not dense, and therefore A is not separable.

VIII. Prove that if X and Y are path-connected spaces, then $X \times Y$ is path-connected.

(10)

Let (x_0, y_0) and (x_1, y_1) be any two points of $X \times Y$. Since X and Y are path-connected, there exists paths $\alpha \colon I \to X$ from x_0 to x_1 and $\beta \colon I \to X$ from y_0 to y_1 . Define $\beta \colon I \to X \times Y$ by $\beta(t) = (\alpha(t), \beta(t))$. It is continuous because its coordinate functions are α and β , which are continuous, and $\beta(0) = (x_0, y_0)$ and $\beta(1) = (x_1, y_1)$.

IX. Prove that every continuous map from \mathbb{R} to \mathbb{Q} is constant.

(10)

The image of \mathbb{R} under any continuous map must be connected. Since the only connected subsets of \mathbb{Q} are its points, the image of \mathbb{R} under any continuous map must be a single point, that is, the map must be constant.

Alternatively, suppose $f : \mathbb{R} \to \mathbb{Q}$ is nonconstant, so $f(q_1) < f(q_2)$ for some $q_1, q_2 \in \mathbb{Q}$. Follow f by the inclusion to obtain $g : \mathbb{R} \to \mathbb{Q} \subset \mathbb{R}$. Choose an irrational number r with $f(q_1) < r < f(q_2)$. Since the domain \mathbb{R} of g is connected, the Intermediate Value Theorem implies that there exists $x \in \mathbb{R}$ with g(x) = r, but this is impossible since g(x) must be a rational number.

X. Prove or give a counterexample to each of the following assertions.

(25)

1. Let (X,d) be a metric space with the property that for every $\epsilon > 0$, there is a finite covering of X by balls of radius ϵ . Then X is compact.

False, for example the open unit interval (0,1) has a finite covering by balls of radius ϵ for any $\epsilon > 0$ (choose $n \in \mathbb{N}$ with $1/n < \epsilon$ and take the ϵ -balls centered at m/n, $m \in \mathbb{N}$ and 0 < m < n.)

2. The cofinite topology on $\mathbb{R} \times \mathbb{R}$ equals the product topology (\mathbb{R} , cofinite) \times (\mathbb{R} , cofinite).

False, for example the subset $\{0\} \times \mathbb{R}$ is a product of a two closed subsets of $(\mathbb{R}, \text{cofinite})$, so is closed in the product topology on $(\mathbb{R}, \text{cofinite}) \times (\mathbb{R}, \text{cofinite})$. But is in neither finite nor all of $\mathbb{R} \times \mathbb{R}$, so it is not closed in the cofinite topology on $\mathbb{R} \times \mathbb{R}$.

3. If there is a subspace A of X for which there exists an unbounded continuous function from A to \mathbb{R} , then there exists an unbounded continuous function from X to \mathbb{R} .

False, for example the function f(x) = 1/x is a continuous unbounded on the subspace (0,1] of [0,1], but [0,1] has no unbounded continuous function, because it is compact.

4. If every connected subspace of X is compact, then X is compact.

False, for example every connected subspace of $\mathbb Q$ is a single point, so is compact, but $\mathbb Q$ is not compact.

5. If every compact subspace of X is connected, then X is connected.

True. We will prove the contrapositive. Suppose X is not connected, and let $X = U \cup V$ be a separation. Since U and V are nonempty, we can choose points $x \in U$ and $y \in V$, and $x \neq y$ since $U \cap V = \emptyset$. The subspace $\{x,y\}$ is compact, since any finite space is compact, and has the discrete topology, since $U \cap \{x,y\} = \{x\}$ and $V \cap \{x,y\} = \{y\}$ are open, so $\{x,y\}$ is not connected. Therefore not every compact subspace of X is connected.

V. Briefly describe the stereographic projection homeomorphism between \mathbb{R}^2 and $S^2 - \{(0,0,1)\}$ (formulas are not necessary, but a good picture is necessary). On a second picture of S^2 , indicate the subsets of S^2 that correspond to the circles $x^2 + y^2 = n^2$ (for $n \in \mathbb{N}$) of \mathbb{R}^2 , and indicate the subset of S^2 that corresponds to the x-axis of \mathbb{R}^2 .

