Mathematics 5853 Name (please print)

Examination I
September 28, 2004

Instructions: Give brief, clear answers.
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Let X =Randlet 7 ={U C X |IM € R, (M,00) CU}U{0} (where (M,c0) means {r € R |r > M}).
Prove that 7 is a topology on X (you do not need to worry about special cases involving the empty set).

X is open since (0,00) C X. The empty set is open by definition of 7.
Suppose {Uq }aca are open sets. Choose a (nonempty) Uy,,. For some M, (M,o0) C U,,. Therefore
(M, 0) € UpeaUq, 80 UgeaU, is also open.

Suppose {Uy,,...,U,,} are open. For each i, choose M; with (M;,00) C U,,. Put M equal to the
maximum of the M;, then (M, o00) C N U,,, so N1 Uy, is open.

Prove that with this topology, X is not Hausdorff.

In fact, no two points can have disjoint open neighborhoods. For if U and V were open neighborhoods
of two distinct points, then as in part 3 of the proof that 7 is a topology, there exists an interval
(M,00) CUNV,and U and V are not disjoint.

Let S be a collection of subsets of a set X, such that X = UgesS. Define B = {S1NS2N---NS, | S; € S},
that is, the collection of all subsets of X that are intersections of finitely many elements of S. Verify that
B is a basis.

By hypothesis, X = UgesS. Let By = S1N---NS,, and By = T3 N--- N1, be two elements of B, and
suppose that ¢ € BiNBy. Thenx € S1N---NS,,NT1N---NT,, =B NBy,and S1N---NS,,NT1N---NT,
is an element of B.

Prove that if B is a basis for the topology on a space X, and A C X, then {BN A | B € B} is a basis for
the subspace topology on A.

It suffices to verify the hypotheses of the Basis Recognition Theorem. Each BN A is open in A. Suppose that
x €V, where V is open in A. Since V' is open in A, there exists an open set U in X with V = U N A. Since
B is a basis for the topology on X, there exists B € B suchthat t € BCU. Sox e BNACUNA=V.

Prove that there is no countable basis for the lower-limit topology on R.

Given a basis B for the lower-limit topology, we will show that B is uncountable. For each r € R, choose
B, € Bwithr € B, C[r,r+1). If r # s, say r < s, then r ¢ By since every element of By is at least s. So
all the sets B, for r € R are distinct, and B contains uncountably many elements.

For each of the following, prove or give a counterexample.

. If f: X — Y is continuous and surjective, and U is an open subset of X, then f(U) is an open subset of Y.

False. Among many possible examples, take the example f: [0,1) — S', where S! is the unit circle,
given by f(t) = exp(2mit). [0,1/2) is open in [0,1) (because it is [0,1) N (—1/2,1/2)), but f([0,1/2))
is not open in S!, (since (1,0) is a limit point of the complement). Another popular example is the
identity function from (R, lower limit) to R, and U = [0, 1).

. If f: X — Y is continuous and surjective, and C' is a closed subset of X, then f(C) is a closed subset of Y.
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False. For the example in the previous problem, [1/2,1) is closed in [0, 1) (because it is [0,1) N [1/2,1]),
but f([1/2,1)) is not closed in S! (since it does not contain its limit point (1,0)). For the identity
function from (R, lower limit) to R, take C' = [0, 1), which is also closed.

If X is Hausdorff, then each point of X is a closed subset.

True. Let x € X, and for each y € X with y # z, choose disjoint open neighborhoods U, and V; of x
and y respectively. Then, X — {z} = Uy, V), is open, so {z} is closed.

If X is Hausdorff, then every subspace of X is Hausdorff.

True. Let A C X and let a # b be two points in A. In X, ¢ and b have disjoint open neighborhoods U
and V,so UN A and V N A are disjoint open neighborhoods of a and b in A.

Let f: X — Y be continuous. If z,, — x in X, then f(z,) — f(z) in Y.

True. Let U be any open neighborhood of f(x). Since f is continuous, f~!(U) is an open neighborhood
of x in X. Since x,, — =z, there exists N so that if n > N, then =, € f~}(U). But then, if n > N,

f(ea) €U,
Let f: X — Y be continuous. If f(x,) — f(z) in Y, then z,, — = in X.

False. Let f: R — R be f(z) = 22, and let ,, = 1 + 1/n. Then f(z,) — 1 = f(—1), but z,, does not
converge to —1.

Let f: X — Y be continuous and injective. If f(z,) — f(z) in Y, then 2, — = in X.

False. In the example f: [0,1) — S! given by f(t) = exp(2mit), the sequence f(1 — 1/n) converges to
(1,0) = £(0) in S!, but 1 — 1/n does not converge to 0 in [0, 1).

If T, is a translation of R? and L is a linear transformation of R?, then Lo T}, = Trwyo L.

True. For any p, we have (LoT)(p) = L(Ty(p)) = L(p+v) = L(p)+ L(v) = Ty (L(p)) = (Tw)o L) (p)-

Let [0,1] be the unit interval in R. Let X be a space whose points are closed subsets and having the
following property: Given any two disjoint closed subsets A and B of X, there exists a continuous function
f: X — [0,1] such that f(A) = {0} and f(B) = {1}. Prove that X is normal. Hint: [0,1/4) and (3/4, 1]
are open subsets of [0, 1].

The points of X are closed subsets, by hypothesis. Let A and B be disjoint closed subsets of X. By
hypothesis, there exists a continuous function f: X — [0,1] such that f(A) = {0} and f(B) = {1}. Since
[0,1/4) and (3/4,1] are open subsets of [0,1] and f is continuous, f~1([0,1/4)) and f~1((3/4,1]) are open
in X, and they are disjoint since [0,1/4) and (3/4,1] are. Since A C f~1([0,1/4)) and B C f~*((3/4,1]),
these are disjoint open sets containing A and B respectively.

Let X be the unit circle in the plane, with the usual metric. Prove that every isometry J: X — X is
surjective.

Suppose that J is not surjective. Let p be a point in S' that is not in the image of J, and let p’ be a point
that is in the image, say p’ = J(¢'). If d(p,p’) = 2, then for the unique point ¢ with d(q, ¢') = 2, we must have
d(J(q),J(¢")) = 2 and therefore J(q) = p. So we may assume that d(p,p’) < 2. Then, there are two points ¢;
and g2 with d(q1,¢") = d(q2,q’) = d(p,p’), and there is one other point p;, besides p, with d(p1,p’) = d(p,p’).
Since p is not in the image of J, we can only have d(J(q1), J(¢')) = d(J(q2),J(¢")) if both J(g1) and J(g2)
equal pq, but this would contradict the fact that isometries are injective.



