ΛA	lat h	ematics	5253
IVI	Chull	cmauro	e J()e Je J

Examination I

September 28, 2004

Instructions: Give brief, clear answers.

I. Let $X = \mathbb{R}$ and let $\mathcal{T} = \{U \subseteq X \mid \exists M \in \mathbb{R}, (M, \infty) \subseteq U\} \cup \{\emptyset\} \text{ (where } (M, \infty) \text{ means } \{r \in \mathbb{R} \mid r > M\}).$ (10)

1. Prove that \mathcal{T} is a topology on X (you do not need to worry about special cases involving the empty set).

X is open since $(0,\infty) \subset X$. The empty set is open by definition of \mathcal{T} .

Suppose $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ are open sets. Choose a (nonempty) U_{α_0} . For some M, $(M,\infty)\subseteq U_{\alpha_0}$. Therefore $(M,\infty)\subseteq \cup_{{\alpha}\in\mathcal{A}}U_{\alpha}$, so $\cup_{{\alpha}\in\mathcal{A}}U_{\alpha}$ is also open.

Name (please print)

Suppose $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ are open. For each i, choose M_i with $(M_i, \infty) \subseteq U_{\alpha_i}$. Put M equal to the maximum of the M_i , then $(M, \infty) \subseteq \bigcap_{i=1}^n U_{\alpha_i}$, so $\bigcap_{i=1}^n U_{\alpha_i}$ is open.

2. Prove that with this topology, X is not Hausdorff.

In fact, no two points can have disjoint open neighborhoods. For if U and V were open neighborhoods of two distinct points, then as in part 3 of the proof that \mathcal{T} is a topology, there exists an interval $(M, \infty) \subseteq U \cap V$, and U and V are not disjoint.

II. Let S be a collection of subsets of a set X, such that $X = \bigcup_{S \in S} S$. Define $\mathcal{B} = \{S_1 \cap S_2 \cap \cdots \cap S_n \mid S_i \in S\}$, (10) that is, the collection of all subsets of X that are intersections of finitely many elements of S. Verify that \mathcal{B} is a basis.

By hypothesis, $X = \bigcup_{S \in \mathcal{S}} S$. Let $B_1 = S_1 \cap \cdots \cap S_m$ and $B_2 = T_1 \cap \cdots \cap T_n$ be two elements of \mathcal{B} , and suppose that $x \in B_1 \cap B_2$. Then $x \in S_1 \cap \cdots \cap S_m \cap T_1 \cap \cdots \cap T_n = B_1 \cap B_2$, and $S_1 \cap \cdots \cap S_m \cap T_1 \cap \cdots \cap T_n$ is an element of \mathcal{B} .

III. Prove that if \mathcal{B} is a basis for the topology on a space X, and $A \subseteq X$, then $\{B \cap A \mid B \in \mathcal{B}\}$ is a basis for (10) the subspace topology on A.

It suffices to verify the hypotheses of the Basis Recognition Theorem. Each $B \cap A$ is open in A. Suppose that $x \in V$, where V is open in A. Since V is open in A, there exists an open set U in X with $V = U \cap A$. Since B is a basis for the topology on X, there exists $B \in B$ such that $X \in B \subseteq U$. So $X \in B \cap A \subseteq U \cap A = V$.

- IV. Prove that there is no countable basis for the lower-limit topology on \mathbb{R} .
- Given a basis \mathcal{B} for the lower-limit topology, we will show that \mathcal{B} is uncountable. For each $r \in \mathbb{R}$, choose $B_r \in \mathcal{B}$ with $r \in B_r \subseteq [r, r+1)$. If $r \neq s$, say r < s, then $r \notin B_s$ since every element of B_s is at least s. So all the sets B_r for $r \in R$ are distinct, and \mathcal{B} contains uncountably many elements.
- ${f V}.$ For each of the following, prove or give a counterexample.
- (40) 1. If $f: X \to Y$ is continuous and surjective, and U is an open subset of X, then f(U) is an open subset of Y.

False. Among many possible examples, take the example $f: [0,1) \to S^1$, where S^1 is the unit circle, given by $f(t) = \exp(2\pi i t)$. [0,1/2) is open in [0,1) (because it is $[0,1) \cap (-1/2,1/2)$), but f([0,1/2)) is not open in S^1 , (since (1,0) is a limit point of the complement). Another popular example is the identity function from $(\mathbb{R}, \text{lower limit})$ to \mathbb{R} , and U = [0,1).

2. If $f: X \to Y$ is continuous and surjective, and C is a closed subset of X, then f(C) is a closed subset of Y.

False. For the example in the previous problem, [1/2, 1) is closed in [0, 1) (because it is $[0, 1) \cap [1/2, 1]$), but f([1/2, 1)) is not closed in S^1 (since it does not contain its limit point (1, 0)). For the identity function from $(\mathbb{R}$, lower limit) to \mathbb{R} , take C = [0, 1), which is also closed.

3. If X is Hausdorff, then each point of X is a closed subset.

True. Let $x \in X$, and for each $y \in X$ with $y \neq x$, choose disjoint open neighborhoods U_y and V_y of x and y respectively. Then, $X - \{x\} = \bigcup_{y \neq x} V_y$ is open, so $\{x\}$ is closed.

4. If X is Hausdorff, then every subspace of X is Hausdorff.

True. Let $A \subseteq X$ and let $a \neq b$ be two points in A. In X, a and b have disjoint open neighborhoods U and V, so $U \cap A$ and $V \cap A$ are disjoint open neighborhoods of a and b in A.

5. Let $f: X \to Y$ be continuous. If $x_n \to x$ in X, then $f(x_n) \to f(x)$ in Y.

True. Let U be any open neighborhood of f(x). Since f is continuous, $f^{-1}(U)$ is an open neighborhood of x in X. Since $x_n \to x$, there exists N so that if n > N, then $x_n \in f^{-1}(U)$. But then, if n > N, $f(x_n) \in U$.

6. Let $f: X \to Y$ be continuous. If $f(x_n) \to f(x)$ in Y, then $x_n \to x$ in X.

False. Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = x^2$, and let $x_n = 1 + 1/n$. Then $f(x_n) \to 1 = f(-1)$, but x_n does not converge to -1.

7. Let $f: X \to Y$ be continuous and injective. If $f(x_n) \to f(x)$ in Y, then $x_n \to x$ in X.

False. In the example $f: [0,1) \to S^1$ given by $f(t) = \exp(2\pi i t)$, the sequence f(1-1/n) converges to (1,0) = f(0) in S^1 , but 1 - 1/n does not converge to 0 in [0,1).

8. If T_v is a translation of \mathbb{R}^2 and L is a linear transformation of \mathbb{R}^2 , then $L \circ T_v = T_{L(v)} \circ L$.

True. For any p, we have $(L \circ T_v)(p) = L(T_v(p)) = L(p+v) = L(p) + L(v) = T_{L(v)}(L(p)) = (T_{L(v)} \circ L)(p)$.

VI. Let [0,1] be the unit interval in \mathbb{R} . Let X be a space whose points are closed subsets and having the following property: Given any two disjoint closed subsets A and B of X, there exists a continuous function $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. Prove that X is normal. Hint: [0,1/4) and (3/4,1] are open subsets of [0,1].

The points of X are closed subsets, by hypothesis. Let A and B be disjoint closed subsets of X. By hypothesis, there exists a continuous function $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. Since [0,1/4) and (3/4,1] are open subsets of [0,1] and f is continuous, $f^{-1}([0,1/4))$ and $f^{-1}((3/4,1])$ are open in X, and they are disjoint since [0,1/4) and (3/4,1] are. Since $A \subseteq f^{-1}([0,1/4))$ and $B \subseteq f^{-1}((3/4,1])$, these are disjoint open sets containing A and B respectively.

VII. Let X be the unit circle in the plane, with the usual metric. Prove that every isometry $J: X \to X$ is (10) surjective.

Suppose that J is not surjective. Let p be a point in S^1 that is not in the image of J, and let p' be a point that is in the image, say p' = J(q'). If d(p, p') = 2, then for the unique point q with d(q, q') = 2, we must have d(J(q), J(q')) = 2 and therefore J(q) = p. So we may assume that d(p, p') < 2. Then, there are two points q_1 and q_2 with $d(q_1, q') = d(q_2, q') = d(p, p')$, and there is one other point p_1 , besides p, with $d(p_1, p') = d(p, p')$. Since p is not in the image of J, we can only have $d(J(q_1), J(q')) = d(J(q_2), J(q'))$ if both $J(q_1)$ and $J(q_2)$ equal p_1 , but this would contradict the fact that isometries are injective.