I. Let $X = \mathbb{R}$ and let $T = \{U \subseteq X \mid \exists M \in \mathbb{R}, (M, \infty) \subseteq U \} \cup \{\emptyset\}$ (where (M, ∞) means $\{r \in \mathbb{R} \mid r > M\}$).

(10) Prove that T is a topology on X (you do not need to worry about special cases involving the empty set).

1. Prove that T is open since $(0, \infty) \subseteq X$. The empty set is open by definition of T.

Suppose $\{U_\alpha\}_{\alpha \in A}$ are open sets. Choose a (nonempty) U_{α_0}. For some M, $(M, \infty) \subseteq U_{\alpha_0}$. Therefore $(M, \infty) \subseteq \bigcup_{\alpha \in A} U_\alpha$, so $\bigcup_{\alpha \in A} U_\alpha$ is also open.

Suppose $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ are open. For each i, choose M_i with $(M_i, \infty) \subseteq U_{\alpha_i}$. Put M equal to the maximum of the M_i, then $(M, \infty) \subseteq \bigcap_{i=1}^n U_{\alpha_i}$, so $\bigcap_{i=1}^n U_{\alpha_i}$ is open.

2. Prove that with this topology, X is not Hausdorff.

In fact, no two points can have disjoint open neighborhoods. For if U and V were open neighborhoods of two distinct points, then in part 3 of the proof that T is a topology, there exists an interval $(M, \infty) \subseteq U \cap V$, and U and V are not disjoint.

II. Let S be a collection of subsets of a set X, such that $X = \bigcup_{S \in S} S$. Define $B = \{S_1 \cap S_2 \cap \cdots \cap S_n \mid S_i \in S\}$, that is, the collection of all subsets of X that are intersections of finitely many elements of S. Verify that B is a basis.

By hypothesis, $X = \bigcup_{S \in S} S$. Let $B_1 = S_1 \cap \cdots \cap S_m$ and $B_2 = T_1 \cap \cdots \cap T_n$ be two elements of B, and suppose that $x \in B_1 \cap B_2$. Then $x \in S_1 \cap \cdots \cap S_m \cap T_1 \cap \cdots \cap T_n = B_1 \cap B_2$, and $S_1 \cap \cdots \cap S_m \cap T_1 \cap \cdots \cap T_n$ is an element of B.

III. Prove that if B is a basis for the topology on a space X, and $A \subseteq X$, then $\{B \cap A \mid B \in B\}$ is a basis for the subspace topology on A.

It suffices to verify the hypotheses of the Basis Recognition Theorem. Each $B \cap A$ is open in A. Suppose that $x \in V$, where V is open in A. Since V is open in A, there exists an open set U in X with $V = U \cap A$. Since B is a basis for the topology on X, there exists $B \in B$ such that $x \in B \subseteq U$. So $x \in B \cap A \subseteq U \cap A = V$.

IV. Prove that there is no countable basis for the lower-limit topology on \mathbb{R}.

(10) Given a basis B for the lower-limit topology, we will show that B is uncountable. For each $r \in \mathbb{R}$, choose $B_r \in B$ with $r \in B_r \subseteq [r, r+1)$. If $r \neq s$, say $r < s$, then $r \notin B_s$ since every element of B_s is at least s. So all the sets B_r for $r \in R$ are distinct, and B contains uncountably many elements.

V. For each of the following, prove or give a counterexample.

(40) 1. If $f: X \to Y$ is continuous and surjective, and U is an open subset of X, then $f(U)$ is an open subset of Y.

False. Among many possible examples, take the example $f: [0,1) \to S^1$, where S^1 is the unit circle, given by $f(t) = \exp(2\pi it)$. $[0,1/2)$ is open in $[0,1)$ (because it is $[0,1) \cap (-1/2, 1/2)$), but $f([0,1/2))$ is not open in S^1, (since $(1,0)$ is a limit point of the complement). Another popular example is the identity function from $[\mathbb{R}, \text{lower limit})$ to \mathbb{R}, and $U = [0,1)$.

2. If $f: X \to Y$ is continuous and surjective, and C is a closed subset of X, then $f(C)$ is a closed subset of Y.
4. If \(X \) is Hausdorff, then each point of \(X \) is a closed subset.

5. Let \(f : X \to Y \) be continuous. If \(x_n \to x \) in \(X \), then \(f(x_n) \to f(x) \) in \(Y \).

6. Let \(f : X \to Y \) be continuous. If \(f(x_n) \to f(x) \) in \(Y \), then \(x_n \to x \) in \(X \).

7. Let \(f : X \to Y \) be continuous and injective. If \(f(x_n) \to f(x) \) in \(Y \), then \(x_n \to x \) in \(X \).

8. If \(T_v \) is a translation of \(\mathbb{R}^2 \) and \(L \) is a linear transformation of \(\mathbb{R}^2 \), then \(L \circ T_v = T_{L(v)} \circ L \).

VI. Let \([0,1]\) be the unit interval in \(\mathbb{R} \). Let \(X \) be a space whose points are closed subsets and having the following property: Given any two disjoint closed subsets \(A \) and \(B \) of \(X \), there exists a continuous function \(f : X \to [0,1] \) such that \(f(A) = \{0\} \) and \(f(B) = \{1\} \). Prove that \(X \) is normal. Hint: \([0,1/4]\) and \((3/4,1]\) are open subsets of \([0,1]\).

The points of \(X \) are closed subsets, by hypothesis. Let \(A \) and \(B \) be disjoint closed subsets of \(X \). By hypothesis, there exists a continuous function \(f : X \to [0,1] \) such that \(f(A) = \{0\} \) and \(f(B) = \{1\} \). Since \([0,1/4]\) and \((3/4,1]\) are open subsets of \([0,1]\) and \(f \) is continuous, \(f^{-1}([0,1/4]) \) and \(f^{-1}((3/4,1]) \) are open in \(X \), and they are disjoint since \([0,1/4]\) and \((3/4,1]\) are. Since \(A \subseteq f^{-1}([0,1/4]) \) and \(B \subseteq f^{-1}((3/4,1]) \), these are disjoint open sets containing \(A \) and \(B \) respectively.

VII. Let \(X \) be the unit circle in the plane, with the usual metric. Prove that every isometry \(J : X \to X \) is surjective.

Suppose that \(J \) is not surjective. Let \(p \) be a point in \(S^1 \) that is not in the image of \(J \), and let \(p' \) be a point that is in the image, say \(p' = J(q') \). If \(d(p,p') = 2 \), then for the unique point \(q \) with \(d(q,q') = 2 \), we must have \(d(J(q), J(q')) = 2 \) and therefore \(J(q) = p \). So we may assume that \(d(p,p') < 2 \). Then, there are two points \(q_1 \) and \(q_2 \) with \(d(q_1,q') = d(q_2,q') = d(p,p') \), and there is one other point \(p_1 \), besides \(p \), with \(d(p_1,p') = d(p,p') \). Since \(p \) is not in the image of \(J \), we can only have \(d(J(q_1), J(q')) = d(J(q_2), J(q')) \) if both \(J(q_1) \) and \(J(q_2) \) equal \(p_1 \), but this would contradict the fact that isometries are injective.