Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.

9. (due 9/7) Prove that \(\mathbb{R} \) with the lower limit topology is Hausdorff.

10. Exercises 1.9.1-1.9.6

11. (due 9/7) Let \(B_1 \) and \(B_2 \) be bases for topologies \(T_1 \) and \(T_2 \) on \(X \). Suppose that for every \(B_1 \in B_1 \) and every \(x \in B_1 \), there exists \(B_2 \in B_2 \) such that \(x \in B_2 \subseteq B_1 \). Prove that \(T_1 \subseteq T_2 \).

12. Exercises 1.9.7, 1.9.8

13. (9/14) Prove a refined version of the Basis Recognition Theorem: Let \(X \) be a topological space and let \(B \) be a basis for the topology on \(X \). Let \(C \) a collection of subsets of \(X \). Then \(C \) is a basis for the topology on \(X \) if and only if

 1. for each \(C \in C \), \(C \) is open in \(X \), and
 2. for each element \(B \in B \) and each \(x \in B \), there exists \(C \in C \) such that \(x \in C \subseteq B \).

14. (9/14) Suppose that \(X \) is a topological space and \(B \) is a basis for the topology on \(X \). If \(A \subseteq X \), then \(\{ B \cap A \mid B \in B \} \) is a basis for the subspace topology on \(A \).

15. Let \((X, d) \) be a metric space (with the metric topology) and let \(A \subseteq X \). Show that the subspace topology on \(A \) equals the metric topology on \(A \) for the metric \(d|_{A \times A} \).

16. (9/14) Exercise 1.2.8.

17. Exercises 1.2.9, 1.2.10.

18. (9/14) Exercises 1.9.27, 1.9.29, 1.9.30.

19. Exercises 1.9.15-1.9.16.

20. Exercises 1.9.11-1.9.13, 1.9.17.