
Mathematics 1823-001H
Final Examination
December 13, 2004

Name (please print)

Instructions: Give brief, clear answers. It is not expected that you will be able to do all the problems. Just relax
and do your best.

I.
(16)

Using the Mean Value Theorem, verify each of the following assertions, assuming that f is a function that
is differentiable for all x, and that a and b are numbers with a < b:

1. If f ′(x) ≥ 0 for all x, then f(a) ≤ f(b).

f(b)− f(a) = f ′(c)(b− a) ≥ 0, since f ′(c) ≥ 0 and b− a > 0, so f(b) ≥ f(a).

2. If f ′(x) ≥ 1/2 for a ≤ x ≤ b, and f(3) = 7, then f(7) ≥ 9.

f(7)− 7 = f(7)− f(3) = f ′(c)(7− 3) ≥ 1/2 · 4 = 2, so f(7) ≥ 9.

3. a− cos(a) ≤ b− cos(b).

cos(b)− cos(a) = cos′(c)(b− a) ≤ b− a, so a− cos(a) ≤ b− cos(b).
Or, one can put f(x) = x− cos(x), note that f ′(x) = 1 + sin(x) ≥ 0, and quote part 1.

4. If f ′′(x) < 0 for all x, then for a < x < b the graph of f(x) lies below the tangent line to y = f(x) at the
point (a, f(a)).

Let g(x) be the difference between f(x) and its tangent line, that is, g(x) = f(x)− f(a)− f ′(a)(x− a),
so that g(a) = 0 and g′(x) = f ′(x) − f ′(a). For any x with a < x < b, the Mean Value Theorem
gives a number c with a < c < x so that g(x) = g(x) − g(a) = g′(c)(x − a) = (f ′(c) − f ′(a))(x − a),
and applying the Mean Value Theorem to f ′ now gives a number c1 with a < c1 < c < x so that
(f ′(c) − f ′(a))(x − a) = f ′′(c1)(c − a)(x − a). Since f ′′(c1) < 0 and c − a and x − a are positive, this
shows that g(x) < 0, that is, f(x) < f(a) + f ′(a)(x− a).

II.
(6)

Analyze the function f(x) = x5/3 − 5x2/3, determining its noteworthy features and where they occur, and
use this information to sketch the graph of f(x).

f(x) is defined for all x, and writing f(x) = x2/3(x−5) shows that f(x) has roots at 0 and 5, and that
f(x) is negative for x < 5 (and x 6= 0) and positive for x > 5. We calculate f ′(x) = 5

3x2/3 − 10
3 x−1/3,

which is defined for all x except x = 0. Writing f ′(x) = 5
3x2/3(1 − 2/x) shows that the only critical

point other than x = 0 is x = 2, and moreover that f ′(x) is positive when x < 0, negative for
0 < x < 2, and positive when x > 2. The value at the critical point is f(2) = −3(4)1/3. For the
second derivative, we have f ′′(x) = 10

9 x−1/3+ 10
9 x−4/3 = 10

9 x−4/3(x+1), which changes sign at x = −1,
is negative for x < −1, and positive for x > −1 (and x 6= 0). In particular, f(x) has an inflection
point at x = −1, where f(−1) = −6 and f ′(−1) = 5. Near x = 0, f ′(x) ≈ 5

3x−2/3, so lim
x→0−

f ′(x) = ∞
and lim

x→0+
f ′(x) = ∞. Putting these together produces a graph of f(x) like the one shown here:
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III.
(8)

A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible volume of such a
cylinder.

A cross-section of the cylinder in the sphere, and the cylinder determined by a given x-value, look like
this:

Using V = πR2H gives V (x) = 2π(r2−x2)x = 2πr2x−2πx3, 0 ≤ x ≤ r. Since V ′(x) = 2πr2−6πx2 =
2π(r2 − 3x2) = 0 only when x = r/

√
3, the largest possible volume is V (r/

√
3) = 4πr3

3
√

3
.

IV.
(5)

A function f(x) is differentiable for x > 0, and lim
x→0+

f(x) = ∞. Is it necessarily true that lim
x→0+

f ′(x) =

−∞? Either explain why it is true (if you think it is true), or show how it could be false (if you think it is
false).

It is false, because f(x) could be oscillating, and thereby producing large variation in f ′(x), even

though its values are limiting to ∞. An explicit example would be f(x) =
1
x

+sin
(

1
x

)
. Since f(x) ≥

1
x
− 1 for all x > 0, we have lim

x→0+
f(x) = ∞. But f ′(x) = − 1

x2
− cos

(
1
x

)
1
x2

= − 1
x2

(cos
(

1
x

)
+ 1),

whose values oscillate between 0 and − 2
x2

as x → 0+, so lim
x→0+

f ′(x) does not exist.

V.
(6)

The function x2 + sin(x) has a unique absolute minimum value at the point where its derivative equals
0 (since its second derivative 2 − sin(x) is always positive). Using Newton’s method, set up an explicit
iteration that one would use to calculate the location of this minimum value. Graphically estimate a
reasonable starting value x1 for the iteration, but do not try to carry out the iteration computationally.

The derivative is 2x + cos(x), so the iteration is

xn+1 = xn −
2xn + cos(xn)
2− sin(xn)

=
cos(xn) + xn sin(xn)

sin(xn)− 2
.

The root of the derivative is where cos(x) = −2x, that is,
at the point where the graphs of cos(x) and −2x cross.
The crude graph at the right suggests a starting value of
x1 = −1/2, or perhaps x1 = −0.4.
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VI.
(6)

Make a quick sketch of the function f(x) =
1

x2 + 1
. Using the graph and the geometric interpretation of

Newton’s method (i. e. not by numerical computation), explain what would happen to the values xn if
you started the iteration of Newton’s method at a number x1 > 0. Similarly, use it to explain what would
happen to the values xn if you started the iteration of Newton’s method at a number x1 < 0, and what
would happen if you started at x1 = 0.

As seen in the graph below, when we start at a positive number x1, the interates move to the right
(in fact, they limit to ∞). If we start very close to 0, as at the number x′1, x2 will be a larger positive
number, and as for x1, the interates continue moving to the right. When x1 < 0, the iterates will
move to −∞, as this is just the mirror image of the case x1 > 0. For x1 = 0, the tangent line is the
horizontal dotted line, so x2 will be undefined.

VII.
(8)

Use antiderivatives to find all functions f(x) satisfying each of the following:

1. f ′′(x) = sin(x).

f ′(x) = − cos(x) + C, so f(x) = − sin(x) + Cx + C1, where C and C1 are arbitrary constants.

2. f ′′(x) = sin(x) and f ′(π/2) = 2.

f ′(x) = − cos(x) + C, giving 2 = f ′(π/2) = −0 + C, so C = 2 and f ′(x) = − cos(x) + 2. We then find
that f(x) = − sin(x) + 2x + C1, where C1 is an arbitrary constant.

3. f ′′(x) = sin(x), f(π/2) = −1, and f ′(π/2) = 2.

f ′(x) = − cos(x)+C, giving 2 = f ′(π/2) = −0+C, so C = 2 and f ′(x) = − cos(x)+2. We then find that
f(x) = − sin(x) + 2x + C1, and using the condition on f(π/2), we have −1 = f(π/2) = −1 + 2 · π

2 + C1,
giving C1 = −π, so f(x) = sin(x) + 2x− π.

4. f ′′(x) = sin(x) and f(π/2) = 3.

From part 1. we have f(x) = − sin(x) + Cx + C1, where C and C1 are arbitrary constants. Using
the condition on f(π/2), we have 3 = f(π/2) = −1 + C · π

2 + C1, giving C1 = 4 − C · π
2 , so f(x) =

sin(x) + C(x− π
2 ) + 4, where C is an arbitrary constant.
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VIII.
(5)

Let f(x) = 5x for x ≥ 0. Use the graph of f(x) to determine explicitly the area function A(x) for f(x)
(starting at 0). Verify by computation that A′(x) = f(x).

IX.
(10)

The graph of a certain function y = f(x) is shown at the right. On
two separate graphs, sketch the graph of f ′(x), and of a function
F (x) for which F ′(x) = f(x) and F (0) = 0.

X.
(6)

Verify that if f is even and g is odd, then f ◦ g is even. Verify that if f and g are both odd, then f ◦ g is
odd.

For f even and g odd, we have (f ◦ g)(−x) = f(g(−x)) = f(−g(x)) = f(g(x)) = (f ◦ g)(x), so f ◦ g is
even.
For f odd and g odd, we have (f ◦ g)(−x) = f(g(−x)) = f(−g(x)) = −f(g(x)) = −(f ◦ g)(x), so f ◦ g
is odd.

XI.
(12)

Calculate each of the following.

1.
dw

dz
if csc(w cot(z)) = w3

− csc(w cot(z)) cot(w cot(z)) (−w csc2(z) + dw
dz cot(z)) = 3w2 dw

dz , so

w csc2(z) csc(w cot(z)) cot(w cot(z))− dw
dz cot(z) csc(w cot(z)) cot(w cot(z)) = 3w2 dw

dz

and therefore
dw

dz
=

w csc2(z) csc(w cot(z)) cot(w cot(z))
cot(z) csc(w cot(z)) cot(w cot(z)) + 3w2

.
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2. G′(x), if G(x) = L(1/L(x)) and L′(x) = 1/x

G′(x) = L′(1/L(x)) · (1/L(x))′ = (1/(1/L(x))) · (−1)(L(x))−2L′(x) = − L(x)
(L(x)2)

· 1
x

= − 1
xL(x)

.

3. the derivative of f(g2(x))g(f2(x))

f ′(g2(x))(g2(x))′g(f2(x)) + f(g2(x))g′(f2(x))(f2(x))′

= 2f ′(g2(x))g(x)g′(x)g(f2(x)) + 2f(g2(x))g′(f2(x))f(x)f ′(x) .

XII.
(6)

Write a precise definition of lim
x→a

f(x) = L. Write a precise definition of lim
x→−∞

f(x) = −∞.

lim
x→a

f(x) = L means that for every positive number ε, there exists a positive number δ so that if

0 < |x− a| < δ, then |f(x)− L| < ε.
lim

x→−∞
f(x) = −∞ means that for every number M , there exists a number N so that if x < N , then

f(x) < M .

XIII.
(8)

Recall that the rate of change of a function f(x) at the x-value a is the unique number f ′(a) for which

f(a + h) = f(a) + f ′(a)h + ε(h) with lim
h→0

ε(h)
h

= 0 (if such a number m exists). Assuming that the rate of

change of f does exist at the x-value a, find the rate of change of the function f2 at a by writing f(a + h)
as f(a) + f ′(a)h + ε(h), squaring this, and applying this description of the rate of change.

f2(a + h) = (f(a) + f ′(a)h + ε(h))2

= f2(a) + 2f(a)f ′(a)h + (f ′(a))2h2 + 2f(a)ε(h) + ε2(h) + 2f ′(a)ε(h)h .

Putting εf2(h) = (f ′(a))2h2 + 2f(a)ε(h) + ε2(h) + 2f ′(a)ε(h)h, we calculate that

lim
h→0

εf2(h)
h

= lim
h→0

(f ′(a))2h + 2f(a)
ε(h)
h

+ ε(h)
ε(h)
h

+ 2f ′(a)ε(h)

= (f ′(a))2 · 0 + 2f(a) · 0 + 0 · 0 + 2f ′(a) · 0 = 0 ,

so the rate of change of f2 at x = a is 2f(a)f ′(a).

XIV.
(4)

State the Intermediate Value Theorem.

Suppose that f(x) is a continuous function for a ≤ x ≤ b. If N is any number between f(a) and f(b),
then there exists a number c with a < c < b such that f(c) = N .

XV.
(6)

Solve the following related rates problem: A lighthouse is located on a small island 3 km away from the
nearest point P on a straight shoreline and its light makes four revolutions per minute. How fast is the
beam of light moving along the shoreline when it is 1 km from P?

We are given that
dθ

dt
= 8π radians/min (since 1 revolution is 2π

radians), and we want
ds

dt

∣∣∣∣
x=4

. We have tan(θ) =
s

3
. Taking the

derivative with respect to t, we have sec2(θ)
dθ

dt
=

1
3

ds

dt
. Special-

izing to the moment when s = 1, when
√

s2 + 9 =
√

10, we find

that
ds

dt
= 3

(√10
3

)2
8π =

80π

3
km/min.


