I. Consider the polar equation $r=1+\cos (\theta)$.
(5)

1. In a (θ, y)-coordinate system, sketch the graph of the Cartesian equation $y=1+\cos (\theta)$.
2. In an (x, y)-coordinate system, sketch the graph of the polar equation $r=1+\cos (\theta)$.
II. Using $\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$, calculate the general formula for $\frac{d y}{d x}$ for a polar curve in which r is a function of θ.
III. For the parametric equations $x=e^{t}, y=-e^{2 t}$, solve for t in terms of x and then eliminate the parameter t (6) to obtain an $x y$-equation. On a graph, show exactly where and in what direction a point P with coordinates $\left(e^{t},-e^{2 t}\right)$ moves as t goes from $-\infty$ to ∞. Hint: to simplify the $x y$-equation, you can use the fact that $a \ln (b)=\ln \left(b^{a}\right)$.
IV. On the ellipse $x=4 \cos (t), y=3 \sin (t)$, there are two points where the tangent line has slope 1 . (6+)
3. Calculate an expression for $\frac{d y}{d x}$ in terms of t.
4. Using the inverse tangent function, find a value of t between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ where the tangent line has slope 1 (the answer should contain $\tan ^{-1}(r)$ for some number r).
5. Find the exact x and y-coordinates where that tangent line occurs on the ellipse (the answer can contain $\tan ^{-1}(r)$ for some number $\left.r\right)$.
6. (For up to 3 bonus points) Using triangles or a diagram in the $x y$-plane, simplify the expressions for these x and y-coordinates to express their exact values without using the inverse tangent function.
V. Calculate the value of the series $\sum_{n=0}^{\infty} \frac{1}{e^{2 n}}$.
VI. Consider the line segment $x=t, y=1-t, 0 \leq t \leq 1$. It runs from $(0,1)$ to $(1,0)$.
(6)
7. Use $d s$ and an integral to calculate that the length of this segment is $\sqrt{2}$.
8. Draw a picture of the cone obtained when this line segment is rotated around the x-axis. Use $d s$ and an integral to calculate the surface area of this cone.
VII. Consider the line segment $x+y=1,0 \leq x \leq 1$.
(4)
9. Change the equation $x+y=1$ to polar coordinates, and solve for r in terms of θ.
10. Write an integral in terms of θ whose value is the area of the triangle bounded by the line segment and the x and y axes. Supply the limits of integration, but do not try to calculate the value of the integral.
VIII. Give the mathematical definition of what it means to say that the series $\sum_{n=1}^{\infty} a_{n}$ convereges to L. (3)
IX. For each of the following sequences, find the limit, if the sequence converges. If the sequence diverges,
(10) determine whether it diverges to ∞, or $-\infty$, or neither. Give some explanation or indication of your reasoning, beyond just finding values on a calculator. In particular, when the series is one of the basic types considered in class, such as n^{p} or r^{n}, note this and use your knowledge of the behavior of those sequences to determine the limit.
11. $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{1+n}$
12. $\lim _{n \rightarrow \infty} \frac{1}{(0.999999999999999739)^{n}}$
13. $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{1+\sqrt{n}}$
14. $\lim _{n \rightarrow \infty} n^{-0.00000000000000001}$
15. $\lim _{n \rightarrow \infty} \arctan (n / 2)$
X. Explain how one knows immediately that the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2 n+3 n^{2}}$ diverges.
