I. Use the Maclaurin series $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ to find the Maclaurin series for $x \sin \left(\frac{x}{2}\right)$.
(3)
II. For the points $P=(1,2,3), Q=(0,3,7)$, and $R=(3,5,11)$:
(11)

1. Write the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ in the form $a \vec{\imath}+b \vec{\jmath}+c \vec{k}$.
2. Calculate the cross product $\overrightarrow{P Q} \times \overrightarrow{P R}$.
3. Calculate $\sin (\theta)$, where θ is the angle between $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.
4. Write an equation for the plane that contains P, Q, and R.
III. Calculate $\vec{a} \cdot \vec{b}$, where $\|\vec{a}\|=3,\|\vec{b}\|=4$, and the angle between \vec{a} and \vec{b} is $\frac{5 \pi}{6}$. (3)
IV. Find all values of x for which the vectors $x \vec{\imath}+3 x \vec{\jmath}-\vec{k}$ and $x \vec{\imath}-\vec{\jmath}+4 \vec{k}$ are orthogonal. (3)
V. Suppose that a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$ is equal to $f(x)$ for all x. Notice that $f(a)=c_{0}+c_{1} \cdot 0+c_{2} \cdot 0+\cdots=c_{0}$. Express $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ as power series centered at $x=a$, and use these series to calculate c_{1} and c_{2}.
VI. Find a unit vector \vec{u} in the direction of $\vec{\imath}-2 \vec{\jmath}$. Write parametric equations for a point moving at unit speed
(4) along a straight line, with velocity vector \vec{u}, if the point is at $(6,1,7)$ when $t=0$.
VII. For the equation $x^{2}+y^{2}-z^{2}=1$, calculate the traces for $z=k$ and for $y=k$. Sketch the traces for $z=k$ (8) in the $x y$-plane, and tell what kind of curves are the traces for $y=k$ in the $x z$-plane (but do not take time to graph them carefully). This tells you what kind of quadric surface the equation represents. What is it called? Make a rough sketch of it.
VIII. Consider the vector-valued function $\vec{r}(t)=\vec{\imath}+\tan (t) \vec{\jmath}+\sec (t) \vec{k}$.
(8)
5. Calculate $\vec{r}^{\prime}(t)$.
6. Write an equation as a vector-valued function for the tangent line to the curve represented by $\vec{r}(t)$ at the point $(1,1, \sqrt{2})$.
7. Write a definite integral whose value is the length of the portion of this curve that runs from $(1,0,1)$ to $(1,1, \sqrt{2})$, but do not try to evaluate the integral.
IX. In this problem, all vectors are assumed to start at the origin. Draw two $x y z$-coordinate systems. On the
(6) first, draw the vectors $\vec{\imath},-2 \vec{k}$, and a typical vector \vec{v} of length between 2 and 3 that lies in the plane $x=0$ and has positive y - and z-components. Draw and label the cross products $\vec{v} \times \vec{\imath}$ and $\vec{v} \times(-2 \vec{k})$. On the second coordinate system, draw \vec{v} and $-2 \vec{k}$, and draw and label the vector projection of \vec{v} onto $-2 \vec{k}$ and the vector projection of $-2 \vec{k}$ onto \vec{v}.
