Mathematics 2433-001 Examination III Form A November 29, 1999 Name (please print)

Student Number

I. Use the Maclaurin series $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ to find the Maclaurin series for $x \sin\left(\frac{x}{2}\right)$.

- **II**. For the points P = (1, 2, 3), Q = (0, 3, 7), and R = (3, 5, 11):
- (11)
 - 1. Write the vectors \overrightarrow{PQ} and \overrightarrow{PR} in the form $a\vec{i} + b\vec{j} + c\vec{k}$.

2. Calculate the cross product $\overrightarrow{PQ} \times \overrightarrow{PR}$.

3. Calculate $\sin(\theta)$, where θ is the angle between \overrightarrow{PQ} and \overrightarrow{PR} .

4. Write an equation for the plane that contains P, Q, and R.

Calculate $\vec{a} \cdot \vec{b}$, where $\|\vec{a}\| = 3$, $\|\vec{b}\| = 4$, and the angle between \vec{a} and \vec{b} is $\frac{5\pi}{6}$. III. (3)

Find all values of x for which the vectors $x\vec{i} + 3x\vec{j} - \vec{k}$ and $x\vec{i} - \vec{j} + 4\vec{k}$ are orthogonal. IV.(3)

- Suppose that a power series $\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots$ is equal to f(x) for all x. Notice that $f(a) = c_0 + c_1 \cdot 0 + c_2 \cdot 0 + \cdots = c_0$. Express f'(x) and f''(x) as power series centered at x = a, and use these series to calculate c_1 and c_2 . V. (4)

VI. Find a unit vector \vec{u} in the direction of $\vec{i} - 2\vec{j}$. Write parametric equations for a point moving at unit speed (4) along a straight line, with velocity vector \vec{u} , if the point is at (6, 1, 7) when t = 0.

- VII. For the equation $x^2 + y^2 z^2 = 1$, calculate the traces for z = k and for y = k. Sketch the traces for z = k (8) in the *xy*-plane, and tell what kind of curves are the traces for y = k in the *xz*-plane (but do not take time
- to graph them carefully). This tells you what kind of quadric surface the equation represents. What is it called? Make a rough sketch of it.

- VIII. Consider the vector-valued function $\vec{r}(t) = \vec{i} + \tan(t)\vec{j} + \sec(t)\vec{k}$. (8)
 - 1. Calculate $\vec{r}'(t)$.

2. Write an equation as a vector-valued function for the tangent line to the curve represented by $\vec{r}(t)$ at the point $(1, 1, \sqrt{2})$.

3. Write a definite integral whose value is the length of the portion of this curve that runs from (1,0,1) to $(1,1,\sqrt{2})$, but do *not* try to evaluate the integral.

IX. In this problem, all vectors are assumed to start at the origin. Draw two xyz-coordinate systems. On the first, draw the vectors \vec{i} , $-2\vec{k}$, and a typical vector \vec{v} of length between 2 and 3 that lies in the plane x = 0 and has positive y- and z-components. Draw and label the cross products $\vec{v} \times \vec{i}$ and $\vec{v} \times (-2\vec{k})$. On the second coordinate system, draw \vec{v} and $-2\vec{k}$, and draw and label the vector projection of \vec{v} onto $-2\vec{k}$ and the vector projection of $-2\vec{k}$ onto \vec{v} .