- I. Let C be the circle of radius 2, centered at the origin in the xy-plane, and oriented counterclockwise. Use
- (9) a parameterization of C to give a direct calculation of each of the following line integrals.

1.
$$\int_C x^2 \, ds$$

2.
$$\int_C y \, dx$$

3.
$$\int_C x \vec{j} \cdot d\vec{r}$$

1. $y\vec{\imath} + \vec{\jmath}$

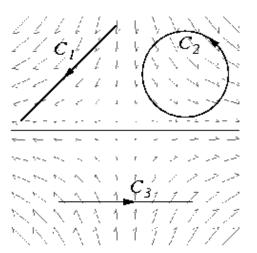
II. Write the Roman numeral of the vector field in front of its formula.(4)

2.
$$x\vec{\imath} + y\vec{\jmath}$$

3. $-\frac{-y}{x^2 + y^2}\vec{\imath} + \frac{x}{x^2 + y^2}\vec{\jmath}$
4. $x\vec{\imath} - y\vec{\jmath}$
I. $\vec{\imath} + \vec{\imath} + \vec{\imath}$

- **III.** The vector field \vec{F} shown to the right is conservative. (6) Tell whether each of the following line integrals appears
 - to be positive, negative, or zero.

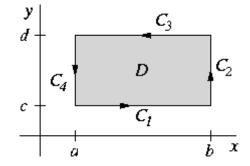
1.
$$\int_{C_1} \vec{F} \cdot d\vec{r}$$
2.
$$\int_{C_2} \vec{F} \cdot d\vec{r}$$
3.
$$\int_{C_3} \vec{F} \cdot d\vec{r}$$



IV. Answer Y or N according to whether the expression is or is not meaningful. (4) $1 = 1(\vec{x})$

- 1. ____ $\operatorname{curl}(\operatorname{div}(\operatorname{curl}(\vec{F})))$
- 2. $\nabla(\operatorname{div}(\nabla f))$
- 3. _____ $\operatorname{grad}(\operatorname{curl}(\vec{F}) \cdot \operatorname{grad} g)$
- 4. _____ $\operatorname{curl}(\operatorname{curl}(\vec{F}) \times \operatorname{grad} g)$
- V. Let P(x, y) and Q(x, y) be functions with continuous partial (6) derivatives, defined on the rectangle *D* shown to the right. The four sides of *D* are C_1, C_2, C_3 , and C_4 . Verify the following.

1.
$$\int_{C_2} P \, dx + Q \, dy = \int_c^d Q(b, y) \, dy \quad \text{(Hint: parameterize } C_2 \text{ as}$$
$$x = b, \ y = t, \ c \le t \le d \text{ .)}$$



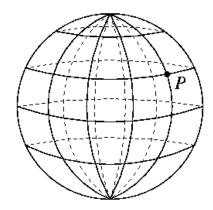
2. $\iint_{D} \frac{\partial Q}{\partial x} dA = \int_{c}^{d} Q(b, y) dy - \int_{c}^{d} Q(a, y) dy \quad \text{(Hint: supply limits of integration, integrating first with respect to x, then use the Fundamental Theorem of Calculus.)}$

VI. Calculate $\operatorname{curl}(f(y)\vec{\imath} + g(z)\vec{\jmath} + h(x)\vec{k})$. (3)

VII. Find f for which $\nabla f = (x+y)\vec{\imath} + (x+y)\vec{\jmath} + \sin(z)\vec{k}$. (4)

VIII. Use Green's Theorem to calculate $\int_C \left((e^{x^2} - 2y^3) \vec{i} + (e^{y^2} + 2x^3) \vec{j} \right) \cdot d\vec{r}$, where C is the unit circle. (4)

- **IX.** The figure to the right shows the sphere S of radius a, and (10) a point P which lies in the front part of S (the coordinates of P are approximately $\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$). Parameterize the sphere as $x = a\cos(\theta)\sin(\phi), y = a\sin(\theta)\sin(\phi), z =$ $a\cos(\phi)$. For this parameterization, the outward normal vector is $a\sin(\phi) (x\vec{i} + y\vec{j} + z\vec{k})$.
 - 1. Draw the vectors \vec{r}_{θ} and \vec{r}_{ϕ} at the point *P*. Draw the outward normal vector at *P* for this parameterization, and label it correctly as either $\vec{r}_{\theta} \times \vec{r}_{\phi}$ or $\vec{r}_{\phi} \times \vec{r}_{\theta}$.
 - 2. Using the formula $dS = \| \vec{r_u} \times \vec{r_v} \| dR$, calculate $\iint_S z^2 dS$.



3. Using the formula $\iint_S \vec{F} \cdot d\vec{S} = \iint_R \vec{F} \cdot (\vec{r_u} \times \vec{r_v}) dR$, calculate $\iint_S (x\vec{i} + y\vec{j} + z\vec{k}) \cdot d\vec{S}$.

- **X**. Bonus problem: A certain conservative vector field \vec{F} is of the form $(y^3 + 1)^{20} \cos(x)\vec{i} + g(x,y)\vec{j}$, for some
- (4) function g(x, y). Let C be the upper half of the unit circle, oriented clockwise. Calculate the exact numerical value of $\int_C \vec{F} \cdot d\vec{r}$.