I. Let $C$ be the circle of radius 2 , centered at the origin in the $x y$-plane, and oriented counterclockwise. Use (9) a parameterization of $C$ to give a direct calculation of each of the following line integrals.

1. $\int_{C} x^{2} d s$
2. $\int_{C} y d x$
3. $\int_{C} x \vec{\jmath} \cdot d \vec{r}$
II. Write the Roman numeral of the vector field in front of its formula.
(4)
4. $\quad y \vec{\imath}+\vec{\jmath}$
5. $\qquad$ $x \vec{\imath}+y \vec{\jmath}$
6. $\qquad$ $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$
7. $\qquad$ $x \vec{\imath}-y \vec{\jmath}$
I.

II.

III.


III. The vector field $\vec{F}$ shown to the right is conservative.
(6) Tell whether each of the following line integrals appears to be positive, negative, or zero.
8. $\quad \int_{C_{1}} \vec{F} \cdot d \vec{r}$
9. $\quad \int_{C_{2}} \vec{F} \cdot d \vec{r}$
10. $\quad \int_{C_{3}} \vec{F} \cdot d \vec{r}$

IV. Answer Y or N according to whether the expression is or is not meaningful.
(4)
11. $\qquad$ $\operatorname{curl}(\operatorname{div}(\operatorname{curl}(\vec{F})))$
12. $\qquad$ $\nabla(\operatorname{div}(\nabla f))$
13. $\qquad$ $\operatorname{grad}(\operatorname{curl}(\vec{F}) \cdot \operatorname{grad} g)$
14. $\qquad$ $\operatorname{curl}(\operatorname{curl}(\vec{F}) \times \operatorname{grad} g)$
V. Let $P(x, y)$ and $Q(x, y)$ be functions with continuous partial
(6) derivatives, defined on the rectangle $D$ shown to the right. The four sides of $D$ are $C_{1}, C_{2}, C_{3}$, and $C_{4}$. Verify the following.
15. $\int_{C_{2}} P d x+Q d y=\int_{c}^{d} Q(b, y) d y$ (Hint: parameterize $C_{2}$ as $x=b, y=t, c \leq t \leq d$.

16. $\iint_{D} \frac{\partial Q}{\partial x} d A=\int_{c}^{d} Q(b, y) d y-\int_{c}^{d} Q(a, y) d y \quad$ (Hint: supply limits of integration, integrating first with respect to $x$, then use the Fundamental Theorem of Calculus.)
VI. Calculate $\operatorname{curl}(f(y) \vec{\imath}+g(z) \vec{\jmath}+h(x) \vec{k})$.
VII. Find $f$ for which $\nabla f=(x+y) \vec{\imath}+(x+y) \vec{\jmath}+\sin (z) \vec{k}$. (4)
VIII. Use Green's Theorem to calculate $\int_{C}\left(\left(e^{x^{2}}-2 y^{3}\right) \vec{\imath}+\left(e^{y^{2}}+2 x^{3}\right) \vec{\jmath}\right) \cdot d \vec{r}$, where $C$ is the unit circle. (4)
IX. The figure to the right shows the sphere $S$ of radius $a$, and
(10) a point $P$ which lies in the front part of $S$ (the coordinates of $P$ are approximately $\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$ ). Parameterize the sphere as $x=a \cos (\theta) \sin (\phi), y=a \sin (\theta) \sin (\phi), z=$ $a \cos (\phi)$. For this parameterization, the outward normal vector is $a \sin (\phi)(x \vec{\imath}+y \vec{\jmath}+z \vec{k})$.
17. Draw the vectors $\vec{r}_{\theta}$ and $\vec{r}_{\phi}$ at the point $P$. Draw the outward normal vector at $P$ for this parameterization, and label it correctly as either $\vec{r}_{\theta} \times \vec{r}_{\phi}$ or $\vec{r}_{\phi} \times \vec{r}_{\theta}$.

18. Using the formula $d S=\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d R$, calculate $\iint_{S} z^{2} d S$.
19. Using the formula $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d R$, calculate $\iint_{S}(x \vec{\imath}+y \vec{\jmath}+z \vec{k}) \cdot d \vec{S}$.
X. Bonus problem: A certain conservative vector field $\vec{F}$ is of the form $\left(y^{3}+1\right)^{20} \cos (x) \vec{\imath}+g(x, y) \vec{\jmath}$, for some
(4) function $g(x, y)$. Let $C$ be the upper half of the unit circle, oriented clockwise. Calculate the exact numerical value of $\int_{C} \vec{F} \cdot d \vec{r}$.
