I. Calculate the following partial derivatives.

1.
$$\frac{\partial w}{\partial u} \text{ if } w = \tan^{-1}(u^2 - v^2)$$

2.
$$\frac{\partial g}{\partial z}$$
 if $g(x, y, z) = \frac{x^2 + y^2 + z}{z + y - z}$

3.
$$u_{yy}$$
 if $u = \ln \sqrt{x^2 + y^2}$

4.
$$\frac{\partial z}{\partial r}$$
 if $z = f(x, y)$

- II. Write the chain rule for $\frac{\partial w}{\partial x}$ if w = w(f, g), f = f(x, y), and g = g(x, y).
- III. Let $f(x, y, z) = x^3y + \sin(z)$.
- 1. Calculate ∇f .

2. Calculate the rate of change of f in the direction of $\vec{i} + \vec{j}$ at the point (-1, 1, 0).

3. Tell a vector \vec{u} for which $D_{\vec{u}}f(-1,1,0)=0$.

4. In what direction is f decreasing most rapidly at (-1,1,0), and what is the rate of change of f in that direction?

IV. Explain why there is no function f(x,y) with $f_x(x,y) = x - y^2$ and $f_y(x,y) = x^2 - y$. (4)

- V. The following two questions refer to the function f(x,y) whose graph is shown here, and the four functions
- (6) indicated in the graphs A, B, C, and D. All of the functions have domain the points (x, y) with $0 \le x \le 1$ and $0 \le y \le 1$.

- 1. The graph of the function $\frac{\partial f}{\partial x}$ looks most like the function in
 - (a) A
- (b) B
- (c) C
- (d) D
- 2. The graph of the function $\frac{\partial f}{\partial y}$ looks most like the function in
 - (a) A
- (b) B
- (c) C
- (d) D

- **VI**. Suppose that $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$.
 - 1. Use implicit differentiation to calculate $\frac{\partial R}{\partial R_2}$.

2. Write an expression for the differential dR in terms of R, R_1 , R_2 , dR_1 , and dR_2 .

- **VII.** Let D be the domain in the xy-plane consisting of all the points (x, y) for which $x \ge 0$, $y \ge 0$, and $y \le 1 x$. (6) Let $f(x, y) = x^2y$.
 - 1. Sketch the domain D.

2. Locate all critical points of f in the domain D.

3. Examine the values of f on the boundary of the domain D, and find the point where its maximum value occurs.