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Abstract. We construct the refined relative compression body neigh-
borhood of a free side of a pared 3-manifold, and detail its properties.
It is one of the topological ingredients needed for a theory of splittings
of Kleinian groups currently under development. This theory extends
previous work of Abikoff-Maskit and Maskit.

Introduction

This paper concerns the topological structure of pared 3-manifolds, which
arise naturally in the study of hyperbolic 3-manifolds. A pared structure
consists of disjoint incompressible annuli and tori in the boundary of the
3-manifold, which satisfy some strong additional conditions. Thurston’s
Geometrization Theorem asserts that these conditions are precisely what is
needed to guarantee the existence of a hyperbolic structure on the interior of
the manifold, for which the elements of the boundary pattern correspond to
“cusps” of the hyperbolic structure. Convenient references for the topology
of pared 3-manifolds are [3, 9].

Bonahon [2] originated the concept of a compression body neighborhood
of a compressible boundary component of a 3-manifold. In [3], a relative
version of this theory was developed, which associates “relative compression
body” neighborhoods to the compressible free sides of a 3-manifold with
boundary pattern (M,m).

The purpose of this paper is to construct a special type of relative com-
pression body neighborhood for a free side F of a pared 3-manifold (M,P ).
It is called the refined relative compression body neighborhood of F . One
may describe it as the minimal compression body neighborhood V so that
any loop in F which is homotopic into the pared locus of M is homotopic
in V into the pared locus of V .

In contrast to the relative compression body neighborhoods used in [3],
it is not possible to choose disjoint refined relative compression body neigh-
borhoods of the free sides of a pared manifold. We will see in theorem 6.2
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below, however, that there is a disjoint collection of refined relative compres-
sion body neighborhoods of some of the free sides whose union contains all
free sides. The union is unique up to isotopy, and the closure of its comple-
ment is called the refined core. The refined core is a pared manifold which
has the property that any essential loop in a free side which is homotopic
into the pared locus is homotopic in that free side into the pared locus.

We will review the basic definitions and facts about relative compression
bodies in section 1. Since we will be dealing only with the restricted case
of pared manifolds, we will use a simplified version of the characteristic
submanifold theory used in [3]. Section 2 contains background material on
pared manifolds. Since the construction of the refined relative compression
body neighborhood is rather complicated, we first give an outline of the pro-
cess. This constitutes section 3, and the detailed version of the construction
is given in section 4. The key “enclosing” properties of the refined rela-
tive compression body neighborhood are proven in section 5, and the main
existence and uniqueness theorems constitute section 6.

At the current juncture, this paper is not intended for publication, but
only as reference material that can be made publicly available. We an-
ticipate that it will be incorporated into later work which will provide a
splitting theory for Kleinian groups based on that developed by W. Abikoff
and B. Maskit [1] and extended by Maskit [7, 8].

1. Relative compression bodies

For our current purposes, a relative compression body will mean a pair
(V, S) which can be constructed as follows. For 1 ≤ i ≤ m let Fi be a
connected orientable 2-manifold, not a 2-sphere or 2-disc. Form a connected
irreducible 3-manifold V from

⋃m
i=1 Fi × I by attaching 1-handles to the

manifold interior of
⋃m
i=1 Fi×{1}. Denote by F the union of the intersection

of ∂V with
⋃m
i=1 Fi×{1} and the intersection of ∂V with the 1-handles. We

call (V, S) a relative compression body if either V is a handlebody and S is
empty, or V is constructed as above and S is the union of

⋃m
i=1 ∂Fi × {1}

with a possibly empty subcollection of the surfaces Fi × {0}.
Components of the closure of ∂V − S are called free sides. In particular,

F is called the distinguished free side of (V, S). We denote each Fi×{0} by
Fi and call it a constituent of V .

More generally, if M is a compact orientable irreducible 3-manifold and P
is an incompressible 2-manifold in ∂M , we call (M,P ) a manifold pair and
refer to the components of the closure ∂M − P as the free sides of (M,P ).
A map of a 2-manifold G into M is called strongly admissible if ∂G maps to
the manifold interior of P , and homotopies of this map are called admissible
if they preserve this condition. Unless otherwise stated, it is assumed that
maps of 2-manifolds into M are proper, meaning that the preimage of ∂M
is ∂G.

The next fact, adapted from lemma 3.1.1 of [3], shows that relative com-
pression bodies contain only the obvious incompressible surfaces.
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Lemma 1.1. Let (V, S) be a relative compression body with distinguished
free side F , and let G be a strongly admissible connected 2-manifold imbedded
in (V, S), with G 6= S2. Assume that π1(G) → π1(V ) is injective. Then
there is a unique constituent Fi of (V, S) such that G is admissibly isotopic
to Fi × {1/2}.

Let F be a free side of a manifold pair (M,P ). Suppose that (V, S) is a
codimension-zero submanifold of (M,P ) with F ⊂ V . We say that (V, S) is
a relative compression body neighborhood of F if

(a) S ⊂ P and S ∩ ∂P = ∂F .
(b) (V, S) is a relative compression body with distinguished free side F ,
(c) the frontier of V is incompressible in M , and
A relative compression body neighborhood (V, S) of F for which each

constituent is properly imbedded is said to be minimally imbedded. From
proposition 3.2.3 of [3], we have a strong existence and uniqueness property
for such neighborhoods.

Proposition 1.2. Let (M,P ) be a manifold pair, and let S1, . . . , Sr be a
collection of free sides of (M,P ). Then there exist disjoint minimally imbed-
ded relative compression neighborhoods for the Si. Their union is unique up
to admissible ambient isotopy in (M,P ).

Here, an admissible isotopy of M means one for which the image of P is P
at all times.

The minimal compression body neighborhood of F has the following en-
closing property, lemma 3.2.2 of [3].

Lemma 1.3. Let F be a free side of (M,P ) and let (V, S) be a minimally
imbedded relative compression body neighborhood of F in (M,P ). Let V ′ be
any irreducible codimension-zero submanifold of M which is a neighborhood
of F having incompressible frontier. Then there is an admissible ambient
isotopy of (M,P ) that moves V into the topological interior of V ′.

Suppose that (V, S) is a relative compression body neighborhood of a free
side F of (M,P ). A component R of M − V is called spurious if (R,R∩∂M)
is of the form (G × [−1, 0], {G × {−1} ∪ ∂G × [−1, 0]}) where G × {0} is a
constituent of V . Note that R ∩ ∂M is connected and homeomorphic to G.
The union of V with R is still a relative compression body; the constituent
G is replaced by a new constituent ∂R−G. The normally imbedded relative
compression body neighborhood of a free side F is the union of a minimally
imbedded relative compression body neighborhood V of F with all spurious
components of M − V . From proposition 3.4.2 of [3], we have existence and
uniqueness of such neighborhoods.

Proposition 1.4. Let (M,P ) be a manifold pair. Then there exist disjoint
normally imbedded relative compression neighborhoods for the free sides of
(M,P ). Their union is unique up to admissible ambient isotopy of (M,P ).
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Let V (M) be the union of a collection of disjoint normally imbedded
relative compression neighborhoods for the free sides of (M,P ). Denote the
closure of M − V (M) by M ′, and put P ′ = M ′ ∩ P . We call the manifold
pair (M ′, P ′) the normal core of (M,P ). By proposition 1.4, the normal
core is unique up to ambient isotopy.

2. Pared 3-manifolds

Let (M,P ) be a manifold pair with M not a 3-ball. We say that (M,P )
is a pared 3-manifold (see Morgan [9]) if the following three conditions hold.

(P1) Every component of P is an incompressible torus or annulus.
(P2) Every noncyclic abelian subgroup of π1(M) is conjugate into the fun-

damental group of a component of P .
(P3) Every map φ : (S1× I,S1×∂I)→ (M,P ) which induces an injection on

fundamental groups is homotopic, as a map of pairs, to a map ψ such
that ψ(S1 × I) ⊂ P .

Let T 2 and A2 denote the torus and annulus respectively. If (M,P ) =
(T 2 × I, T 2 × {0}), or (A2 × I, A2 × {0}), or (A2 × I, ∅), then (M,P ) is
said to be elementary, otherwise it is nonelementary. The elementary pared
3-manifolds correspond to the hyperbolic 3-manifolds with abelian funda-
mental groups.

From [3] we have some properties of nonelementary pared 3-manifolds.

Lemma 2.1. Let (M,P ) be a nonelementary pared 3-manifold.

(i) Every toroidal component of ∂M is contained in P .
(ii) M is not homeomorphic to T 2×I, to the I-bundle over the Klein bottle,

or to the solid torus.
(iii) M does not contain an incompressible Klein bottle.
(iv) For each component P0 of P , the subgroup π1(P0) is a maximal abelian

subgroup of π1(M).

Two pared 3-manifolds (M,P ) and (N,Q) are called pared homotopy
equivalent when they are homotopy equivalent as pairs, and a homotopy
equivalence of pairs is called a pared homotopy equivalence.

By lemma 5.2.1 of [3], a pared manifold satisfies Johannson’s conditions to
have a characteristic submanifold if all of its free sides are incompressible.
We will briefly review the characteristic submanifold here, as adapted to
pared 3-manifolds. (In Johannson’s language of boundary patterns, we will
be describing the case of 3-manifolds with useful boundary patterns that are
the completions of boundary patterns with disjoint elements).

Let (M,P ) be a pared manifold. Denote ∂M − P by −P . A map of
a surface G into M is called admissible if it is proper and does not meet
∂P . A map of a torus into M is called essential if it induces an injection on
fundamental groups. A map of an annulus X into M is called essential if it is
admissible, induces an injection on fundamental groups, and is not properly
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homotopic to a map into ∂M whose image meets at most one component of
∂P .

Let R be an I-bundle over a surface B. A component of the associated
∂I-bundle of R is called a lid. The closures in ∂R of the components of the
complement of the lid or lids are called the sides; these are the restrictions
of the I-bundle to the boundary components of B. An imbedding of R into
M is called admissible if each lid lies either in P or in −P , and each side is
either a component of P , or a component of −P , or is properly imbedded.

An embedded Seifert fibered space R in M is admissibly embedded if
R ∩ ∂M is a 2-manifold which is a union of fibers in ∂R, and if whenever
R meets ∂P , each component of R ∩ ∂P is a fiber of R and R contains a
regular neighborhood in ∂M of this fiber.

An admissibly embedded I-bundle or Seifert fibered space R in M is
essential if every component of the frontier of R in M is an essential torus
or annulus in M . In particular, this implies that π1(R)→ π1(M) is injective.
A homotopy F : R × I → M is admissible if for each t, F−1

t (P ) = F−1
0 (P )

and F−1
t (−P ) = F−1

0 (−P ).
A compact codimension-zero submanifold Σ of M has the engulfing prop-

erty if every essential embedding f : R → M of an I-bundle or a Seifert
fibered space into M is admissibly isotopic into Σ. We define Σ to be a
characteristic submanifold of M if Σ consists of a collection of essential
I-bundles and Seifert fiber spaces having the engulfing property, and Σ is
minimal in the sense that no proper subcollection of the components of Σ
has the engulfing property.

The characteristic submanifold has another useful property called the
enclosing property. This means that every essential map of a torus, or
annulus into M is admissibly homotopic to a map with image in Σ.

Jaco and Shalen [5] and Johannson [6] gave conditions sufficient to guaran-
tee that a manifold pair (M,P ) have a characteristic submanifold, in which
case it is unique up to admissible isotopy. In [3], it is proven that these
conditions are satisfied by pared manifolds provided that each free side is
incompressible. Moreover, one may choose a fibering of the characteristic
submanifold of (M,P ) so that none of its components is an I-bundle over
an annulus or Möbius band. The characteristic submanifold of a boundary
pattern associated to a pared 3-manifold is then described by the following
theorem from [3].

Theorem 2.2. (Pared Characteristic Submanifold Restrictions) Let (M,P )
be a nonelementary pared 3-manifold whose free sides are incompressible.
Let Σ denote the characteristic submanifold of (M,P ), with fibering selected
so that no component of Σ is an I-bundle over an annulus or Möbius band.

(i) Suppose V is an I-bundle component of Σ. Then each of its lids lies
in a free side of (M,P ), its sides are components of P , and its base
surface has negative Euler characteristic.
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(ii) Suppose V is a Seifert fibered component of Σ. Then V is homeomor-
phic either to T 2 × I or to a solid torus. If V is homeomorphic to
T 2 × I, then one of its boundary components is a component of P and
the other components of V ∩ ∂M are annuli in free sides of (M,P ).

In the pared setting, the I-bundles of the characteristic submanifold can
appear only in very specific conigurations, described in lemma 5.3.1 from [3]:

Lemma 2.3. Let (M,P ) be a pared nonelementary 3-manifold with incom-
pressible free faces. Let Σ be the characteristic submanifold of (M,P ), and
let V be a component of Σ which is an I-bundle. Then

(i) the lids of V must be contained in free sides of (M,P ), and
(ii) every side of V which meets ∂M is a component of P .

We will use this to develop the following special property of the charac-
teristic submanifold of a pared manifold.

Lemma 2.4. Let (M,P ) be a nonelementary pared manifold with incom-
pressible free faces, and let Σ be the characteristic submanifold of (M,P ).
Then every essential annulus in (M,P ) with one end in a component of P
is admissibly homotopic into a Seifert-fibered component of Σ. Every col-
lection of disjoint imbedded essential annuli, each having one end in P , is
admissibly isotopic into the union of the Seifert-fibered components of Σ.

Proof. Let A be a singular annulus as in the lemma. Since A is essential,
pared condition (P3) shows that its other end lies in −P . By the enclosing
property of the characteristic submanifold, there is an admissible homotopy
of A which moves it into a component V of Σ. Suppose for contradiction
that V is I-fibered. Let G be the component of P that contains one end
of A. Lemma 2.3 implies that G is a side of V . Since A is essential, the
other end of A must also be in a side of V (rather than a lid), hence must
lie in P , contradicting pared condition (P3) for (M,P ). For a collection of
disjoint imbedded essential annuli, the argument is the same except that the
Engulfing Property is used in place of the Enclosing Property.

3. The basic idea of the construction

Roughly speaking, the refined relative compression body neighborhood is
constructed by expanding the normally imbedded compression body V of
F so that it contains a representative of each isotopy class of simple loop
in P that lies in M − V and is homotopic into V . Unlike its minimally
and normally imbedded cousins, the components of its frontier need not be
constituents. The construction actually proceeds in two stages.

First, a certain unionX of relative compression body neighborhoods of the
free sides is constructed. It is called the pre-refined compression submanifold
of (M,P ). To obtain X, we start with a union

⋃
Vi of disjoint, normally

imbedded compression body neighborhoods for the free sides of (M,P ). The
closure of M−

⋃
Vi is the normal core (M ′, P ′). To obtain X, we add to

⋃
Vi
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regular neighborhoods of a disjoint collection of annuli in M ′, each having
one end in the frontier of

⋃
Vi and the other end in P . These annuli lie in

the Seifert-fibered components of the characteristic submanifold of (M ′, P ′).
Once X has been constructed, we can proceed with the second stage of the

construction of the refined relative compression body neighborhood (W,Q)
of a free side F of (M,P ). Let W0 be the component of X which contains
F . Obtain W by adding to W0 all complementary components that have
the form of products S × I whose intersection with W0 consists exactly of
S × {0}. Such complementary components are said to be adherent. Note
that these are components of the complement of W0, not the complement
of X. Indeed, some of the adherent components for W0 may contain other
components of X and hence other free sides, although we will see that these
additional free sides must be incompressible. In fact, such a free side must
have the form S × {1} for some product strcture S × I on the adherent
component, for which the component of X that contains S × {1} is simply
S × [1/2, 1]. Finally, we put Q = W ∩ P .

The pre-refined compression submanifold X has two enclosing properties,
developed in propositions 5.1 and 5.2. The first says that any annulus in
(M,P ) with one end in a free side and the other an essential loop in P is
admissibly homotopic into X. The second says that if S is a component of
the frontier of X, and γ is an essential closed curve in S which is homotopic
in M into P , then γ is homotopic in S into S ∩ P . The latter is not
stated in the usual form of an enclosing property, but in the presence of
the pared property it is equivalent to the assertion that any annulus with
one end an essential loop γ in the frontier of X and the other end in P , is
homotopic, relative to γ and keeping the other end in P , into the frontier.
This equivalence is explained after the statement of proposition 5.2.

The enclosing properties of X lead immediately to corresponding enclos-
ing properties of (W,Q). After proving proposition 5.3, which analyzes the
adherent components, and noting that (W,Q) inherits the enclosing proper-
ties of X, we are prepared for the main results. The first is the uniqueness
of (W,Q), theorem 6.1. It says that the second enclosing property, together
with a couple of topological conditions, characterizes the refined relative
compression body neighborhood up to admissible isotopy in (M,P ). The
second main result, theorem 6.2, shows that there is a unique way to select
a disjoint collection of refined relative compression body neighborhoods of
some of the free sides of (M,P ), so that the union contains all the free sides.
This union satisfies appropriate versions of the two enclosing properties.

4. The construction

In this section we will give the details of the construction of X. As in the
section 2, for the manifold pair (M,P ) we denote ∂M − P by −P .
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Fix a union
⋃
Vi of disjoint normally imbedded relative compressible body

neighborhoods of the free sides of (M,P ), and let (M ′, P ′) be the associ-
ated normal core. Then (M ′, P ′) is pared, and each free side of (M ′, P ′) is
incompressible, so the characteristic submanifold Σ of (M ′, P ′) exists.

Consider a Seifert-fibered component Z of Σ. By the Pared Characteristic
Submanifold Restrictions 2.2, Z is homeomorphic to either a solid torus
or T 2 × I.

Suppose first that Z is a solid torus. If Z is disjoint from P ′, we ignore
it. If not, then by pared condition (P3), Z meets P ′ in exactly one annulus
A′ of P ′ (and since Z is admissibly imbedded, one of the components of
Z ∩ ∂M ′ will be a regular neighborhood of A′). A core circle of A′ must
generate π1(Z), for if not then ∂Z −A′ gives a violation of (P3). Let B1, . . . ,
Bk be the other annuli of Z ∩∂M ′, which must lie in ∂M ′ − P ′, the frontier
of
⋃
Vi. For each Bj , choose an imbedded annulus Cj in Z having one

boundary component a core circle of Bj and the other in the interior of A′.
Choose the Cj to be disjoint; then,

⋃
Cj is unique up to admissible isotopy

in Z.
If Z is T 2 × I, then by the Pared Characteristic Submanifold Restric-

tions 2.2, one of its boundary components is a torus component of P ′ and
the rest of Z∩∂M ′ consists of annuli B1, . . . , Bk in ∂M ′ − P ′. As in the case
when Z was a solid torus, choose a disjoint collection of imbedded annuli
Cj in Z each having one boundary component a core circle of one of the Bj
and the other in the torus component of P ′. Again,

⋃
Cj is unique up to

admissible isotopy in Z.
Notice that in both these cases, any annulus (respectively, imbedded an-

nulus) in Z with one end an essential loop in Z ∩ P and the other end in
another component of Z ∩ ∂M ′ is homotopic (respectively, isotopic) in Z,
keeping its ends in Z ∩ ∂M ′, into one of the Cj .

Now let C be the union of all the selected Cj . Let X be the union of
⋃
Vi

with a small regular neighborhood of C in M ′. That is, X is obtained from⋃
Vi by adding product neighborhoods of the Cj , each meeting a component

of the frontier of
⋃
Vi in an annulus and meeting ∂M in an incompressible

annulus contained in the interior of P ′. We call X the pre-refined compres-
sion submanifold. Each component of X is a compression body, indeed X
deformation retracts to

⋃
Vi. Also, the frontier of X is incompressible in M .

For since the annuli Z ∩ (
⋃
Vi) are incompressible in the frontier of

⋃
Vi, a

compression of the frontier of X would lead to a compression of the frontier
of
⋃
Vi.

5. The enclosing properties

We will now give the first enclosing property of the pre-refined compres-
sion submanifold X.

Proposition 5.1. Let A be an admissible singular annulus in (M,P ) hav-
ing one end in ∂M − P and the other an essential loop in P . Then A is
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admissibly homotopic into X. If A is a collection of disjoint imbedded an-
nuli, each having one end in ∂M − P and the other an essential loop in P ,
then A is admissibly isotopic into X.

Proof. We will first prove the case when A is an admissible singular annulus.
For a union of a disjoint collection, the argument is similar, and we will just
indicate the necessary modifications.

Recall the union of normally imbedded relative compression body neigh-
borhoods

⋃
Vi used in the construction of X. The normal core (M ′, P ′) is

M −
⋃
Vi. Let S be the frontier of

⋃
Vi.

Here is a sketch of the proof. We first treat the case when one boundary
component of A maps into a component of P that is disjoint from M ′. In
this case A can be moved entirely into

⋃
Vi. In the remaining cases, we may

assume that one boundary component of A maps into P ′, and hence that
the preimage of the frontier S of

⋃
Vi consists of circles (not arcs). When

a pair of these circles bounds a subannulus of A that maps into
⋃
Vi, there

is an admissible homotopy that pulls that subannulus out of
⋃
Vi. After

carrying out these homotopies, the preimage of S consists of a single circle,
dividing A into an annulus A1 that maps to

⋃
Vi and an annulus A2 that

maps to M ′. If A2 is inessential in (M ′, P ′), there is an admissible isotopy
that moves A into

⋃
Vi. Otherwise, lemma 2.4 shows that A2 can be moved

onto one of the selected annuli Ck used in the construction of X, so again
A can be moved into X.

Notice first that each component of P ′ is a deformation retract of a com-
ponent of P . On the other hand, by construction of the normally imbedded
compression bodies, a component of P disjoint from P ′ must be of the form
G× {0} ∪ ∂G× I for some constituent G of some Vj .

Let A be a singular annulus as in the proposition. Since each component
of P ′ is a deformation retract of a component of P , we may change A by
admissible homotopy to assume that the other boundary component maps
either to P ′ or to a component P0 of P that is disjoint from P ′. Suppose the
latter. From above, P0 is of the form G×{0} ∪ ∂G× I for some constituent
G of some Vj . There is a collection of properly imbedded discs in Vj whose
union separates P0 from S. Put A transverse to this union. Since A is
incompressible, all circles in the preimage of the discs must be inessential
in A, so using irreducibility they can be removed from the preimage by
admissible homotopy of A. After this is completed, A maps entirely into
Vj , and the proposition is verified. So we may assume that one boundary
component of A maps to P ′.

Put A transverse to S. Since one boundary component maps to ∂M − P
and the other to P ′, the preimage of S is disjoint from ∂A, so consists
of circles. Since S is incompressible, any circles in the preimage that are
contractible in A can be removed by admissible homotopy, so we may assume
that each circle in the preimage is essential in A and in S. Suppose there is
an annulus A′ in A which lies between two adjacent circles of the preimage,
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such that A′ maps to some Vj . Let E be a union of cocore 2-discs for the
1-handles of Vj . Since no boundary points of A′ map to E, the preimage
of E in A′ consists of circles, and since ∂A′ is essential in S these circles
are contractible in A′ and may be removed by homotopy of the map on A′

relative to ∂A′. Therefore there is an admissible homotopy of A that moves
A′ off of E, and then out of

⋃
Vi, eliminating two circles in the preimage of

S. Eliminate all such annuli A′. Then, since one boundary component of
A maps to ∂M − P and the other to P ′, the preimage of S is exactly one
circle, which separates A into two annuli A1 and A2 mapping to

⋃
Vi and

M ′ respectively.
Suppose first that A2 is inessential in (M ′, P ′). This implies that A2

is admissibly homotopic relative to A2 ∩ S into
⋃
Vi. Consequently, A is

admissibly homotopic into
⋃
Vi. On the other hand, if A2 is essential then

by lemma 2.4, there is an admissible homotopy of A2, and hence of A, that
moves A2 into a Seifert-fibered component of Σ, and then onto one of the
annuli Cj . After such a homotopy, A lies in X, completing the proof for the
case of a singular annulus.

If A is imbedded, or is a disjoint collection of imbedded annuli, the previ-
ous arguments can be carried out using isotopies instead of homotopies; one
must use lemma 4.2 of [6] when removing inessential annuli, and lemma 1.1
to obtain isotopies moving the annuli A′ out of

⋃
Vi.

Here is the second enclosing property of the pre-refined compression sub-
manifold X.

Proposition 5.2. If S is a component of the frontier of X, and γ is an
essential closed curve in S which is homotopic in M into P , then γ is
homotopic in S into X ∩ P .

As remarked in the introduction to this section, this is not stated in the the
usual form of an enclosing property, but it is equivalent to the assertion that
any singular annulus with one end an essential loop γ in S and the other
end in P is homotopic, relative to γ and keeping the other end in P , into S.
For suppose that such a singular annulus is given, and that the condition in
proposition 5.2 holds. The homotopy in S gives a singular annulus in S with
one end equal to γ and the other in S ∩ P . The two annuli glue together to
give an essential annulus with both ends in P . Since this is homotopic into
P , the original annulus is homotopic relative to γ and keeping its other end
in P to the annulus in S. On the other hand, suppose that the enclosing
property holds and that γ is homotopic in M into P . The homotopy gives
a singular annulus, and when deformed into S, relative to γ, it becomes a
homotopy in S into S ∩ P .

Proof. Let V be the component of X that contains S, and let Q = V ∩ P .
Since V is a compression body, γ is homotopic in V to a loop γ1 in a free
side of (M,P ).
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Proposition 5.1 implies that γ1 and hence γ are homotopic in V into Q.
Since γ is essential, we may assume that the homotopy from γ into Q misses
an open regular neighborhood of a collection of cocores for the 1-handles of
V . The complement in V of this open regular neighborhood has a structure
as a product G × I where S and Q are contained in G × {0}. Projecting
the homotopy to G × {0} gives a homotopy in G × {0} from γ to a loop
in Q. This implies that γ is homotopic in S into Q. (The homotopy is
a map from an annulus into G × {0}. Put it transverse to ∂S and then
deform it to remove contractible simple closed curves from the preimage
of ∂S. Then, the domain contains a smaller annulus with one boundary
component mapping as γ, the other mapping to ∂S, and the interior having
image disjoint from ∂S, and hence contained in S.) The restriction of the
homotopy to this subannulus is a homotopy in S carrying γ into Q.

Let Z be a codimension-zero submanifold ofM . A component R ofM − Z
which is a product of the form S × I where R ∩ Z = S × {0} is called an
adherent component of M − Z. We also say it is an adherent component for
Z. An adherent component for a component of the pre-refined compression
submanifold X can contain a free face of (M,P ) (and hence can contain
other components of X). The next proposition shows that this phenomenon
can occur only in a very restricted way.

Proposition 5.3. Let R be an adherent component for a component W0 of
X. Then R can be given product coordinates S×I so that R∩W0 = S×{0},
R ∩ P = ∂S × I, and R ∩X = S × {0} ∪ S × [1/2, 1].

Proof. Write R = S × I with S × {0} = R ∩W0. From the construction
of X, we may assume that S × ∂I ⊂ P . Any essential loop in S × {1} ∩
P is homotopic into S × {0}, and consequently homotopic into the free
side of (M,P ) contained in W0. By proposition 5.1, the singular annulus
determined by this homotopy is admissibly homotopic into X and hence
into W0. Thus every loop in S × {1} ∩ P is homotopic in P into ∂S × {1}.
It follows that each component of S × {1} ∩ P is an annulus containing
a boundary component of S. If S itself were an annulus, then either one
of the annuli Ci would be inessential in (M ′, P ′), or two of the annuli Ci
and Cj would be parallel in (M ′, P ′), neither of which is permitted in our
construction. So each component of S ×{1} ∩P is a collar neighborhood of
a boundary circle of S × {1}, and the product structure can be reselected
so that R ∩ P = ∂S ∩ I. The component of X that contains the free face
S × {1} of (M,P ) has incompressible frontier and is disjoint from S × {0}.
Therefore its frontier is admissibly isotopic to S × {1/2}, so the component
is admissibly isotopic to S × [1/2, 1].

To construct the refined relative compression body neighborhood (W,Q)
of a free side F , we start with the component W0 of X that contains F , add
its adherent components, and put Q = W ∩ P . For each component R of
M −W such that R∩W is connected, π1(R∩W )→ π1(R) is not surjective,



12 RICHARD D. CANARY AND DARRYL McCULLOUGH

since otherwise R would be a product with one end a component of the
frontier of W (by theorem 10.5 of [4]), and R would have been adherent.
The pared properties of (M,P ) imply that no component of the frontier of
W is a torus or annulus.

The enclosing properties of the refined relative compression body neigh-
borhood are immediate consequences of the corresponding properties of X.

Proposition 5.4. Let (W,Q) be a refined relative compression body neigh-
borhood of the free side F of (M,P ), and let A be any admissible singular
annulus in (M,P ) having one end in F and the other an essential loop in
P . Then A is admissibly homotopic into W . If A is a collection of disjoint
imbedded annuli, each having one end in F and the other an essential loop
in P , then A is admissibly isotopic into W .

Proof. By proposition 5.1, A is admissibly homotopic (or isotopic, in the
latter case) into X. Since W contains the component of X that contains F ,
A will then lie in W .

Proposition 5.5. Let (W,Q) be a refined relative compression body neigh-
borhood of the free side F of (M,P ). If S is a component of the frontier of
W , and γ is an essential closed curve in S which is homotopic in M into
P , then γ is homotopic in S into Q.

Proof. If S is a component of the frontier of W , then it is a component of
the frontier of X, so proposition 5.2 applies.

6. Existence and uniqueness

Our uniqueness result gives a characterization of the refined relative com-
pression body neighborhood, in terms of the second enclosing property.

Theorem 6.1. Let F be a free side of a pared 3-manifold (M,P ), and let
(W,Q) be the refined relative compression body neighborhood of F . Suppose
that (W ′, Q′) is a relative compression body neighborhood of F in (M,P )
such that:

(i) W ′ ∩ P = Q′, and if G is a free face of (W ′, Q′), then either G ⊂ ∂M
or G ∩ ∂M = ∂G.

(ii) If R is a component of M −W ′ such that R ∩W ′ is connected, then
π1(R ∩W ′)→ π1(R) is not surjective.

(iii) If S′ is a component of the frontier of W ′, and γ is an essential loop in
S′ which is homotopic in M into P , then γ is homotopic in S′ into Q′.

Then (W ′, Q′) is admissibly isotopic to (W,Q).

Proof. Recall that W was constructed starting from a normally imbedded
relative compression body neighborhood V of F and a regular neighborhood
N(A) of a union A of disjoint annuli in M ′, forming the union W0 of these,
then adding in the adherent components of the complement. By lemma 1.3,
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and by use of condition (ii), we may assume that V lies in the topological in-
terior of W ′. Using lemma 1.1, we may assume that each properly-imbedded
constituent of V equals G× {1/2} for some constituent G of W ′.

We will show that A is admissibly isotopic, fixing A ∩ V , into W ′. Let
T ′ denote the frontier of W ′. Note that by condition (i), ∂T ′ ⊂ P . We may
assume that A is transverse to T ′, and since A is incompressible, that none
of the components of the intersection is a contractible circle. Consider an
arc of intersection α. Since V lies in the interior of W ′, α must separate off
a disc E in A with boundary consisting of α and an arc α′′ in P . We may
choose E outermost, so that it meets T ′ only in α.

We claim that the endpoints of α lie in the same component of ∂T ′.
Suppose not, so that they lie in distinct boundary components C1 and C2.
Since α′′ lies in P , C1 and C2 lie in the same component P0 of P , and since
this component is an annulus or a torus, we may orient C1 and C2 to rep-
resent the same element of π1(P0). Since α is homotopic to α′′, the loop
α ∗ C2 ∗ α ∗ C1 is contractible in M and hence in T ′, so the component T
of T ′ that contains C1 ∪ α ∪ C2 is an annulus. Since its boundary compo-
nents lie in P0, and (M,P ) is pared, T is homotopic into P0. This implies
that the component of M −W ′ that contains T is adherent, contradicting
condition (ii) and establishing the claim.

Choose an arc α′ in ∂T ′ connecting the endpoints of α. The existence
of E shows that α ∪ α′ is homotopic into P . By condition (iii), α ∪ α′ is
homotopic in T ′ into ∂T ′, which implies that α is parallel in T ′ into ∂T ′.
So there is a disc E′ in T ′ with boundary the union of α and an arc in P .
Since P is incompressible, the disc E ∪ E′ is parallel into P . So there is an
admissible isotopy of A that moves E across the region of parallelism and
through E′, eliminating α and possibly other arcs of A∩ T ′. Repeating this
process, we may eliminate all arcs of A ∩ T ′.

Now let β be a circle of A ∩ T ′ that is outermost on A, that is, so that
the interior of the annulus L on A between β and a circle of A ∩ P has
no intersections with T ′. By condition (iii) for W ′, β and some boundary
component of T ′ cobound an annulus L′ in T ′. Since M − V is pared, L∪L′
is parallel in M − V into P . So there is an admissible isotopy of A in M − V
that moves L through the region of parallelism and across L′, eliminating β
and possibly other circles of A ∩ T ′. Repeating this process, we we produce
an admissible ambient isotopy that fixes V and moves A to be disjoint from
T ′, and hence contained in W ′. The reverse of this isotopy fixes moves W ′

so that it contains the original A. By a further isotopy, we may assume that
W ′ contains W0 in its topological interior.

Now consider a component S of the frontier of W0, and let R be the
component of M −W0 that contains S. Since W lies in the topological
interior of W ′, there is a component R′ of W ′ −W that contains S. Suppose
first that R is adherent, so R ⊂W and R can be given product coordinates
S× I so that R∩W0 = S×{0} and R∩P = ∂S× I. Any components of the
frontier of W ′ contained in R would be parallel into R ∩ ∂M , contradicting
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condition (ii). So in this case, R′ = R. Suppose now that R is not adherent,
so that S is a component of the frontier of W . Since π1(F ) → π1(W ′) is
surjective, we must have R′ ∩W0 = S and π1(S)→ π1(R′) surjective. So R′

is a product S×I with S = S×{0}. Now let α be any essential loop in Q′∩R′.
Since W ′ is a compression body, there is a singular annulus with one end
equal to α and the other in F . By proposition 5.4, this annulus is admissibly
homotopic into W , thus every essential loop in Q′∩R is homotopic into S. So
each component of Q′ ∩R is an annulus meeting S in one or both boundary
components. If one of them meets S in both boundary components, then
since R is a product with one end equal to S, S is parallel into P and W
violates condition (ii). So each annulus has exactly one boundary component
in S, that is, Q′ ∩ ∂R is a collar neighborhood of ∂S. If G is the free side
of (W ′, Q′) in R, then G cannot be in ∂M , since R was not adherent. So
by condition (i), G is properly imbedded. Therefore there is an admissible
isotopy of W that expands it to include R′. Repeating for all components
of the frontier of W0, we move W onto W ′.

We are now going to show that a disjoint collection of refined relative
compression body neighborhoods can be selected which includes all free
sides of (M,P ), and that such a collection is unique up to isotopy.

Theorem 6.2. Let (M,P ) be a pared manifold.

(i) There exists a subcollection F1, . . . , Fr of the free sides of (M,P ) and
a disjoint collection W1, . . . , Wr, where each Wi is a refined relative
compression body neighborhood of Fi, such that the union of the Wi

contains all free sides of (M,P ). The union of the Wi is unique up to
admissible isotopy.

(ii) Each free face F which is not one of the Fi is incompressible, and
either (M,P ) = (F × I, ∂F × I), so that (M,P ) is the refined relative
compression body neighborhood of both of its free faces, or the refined
relative compression body neighborhood of F is a collar neighborhood
which can be taken to lie in

⋃
Wi.

(iii) If A is a singular annulus with one end contained in a free side of
(M,P ) and the other end an essential loop in P , then A is admissibly
homotopic into

⋃
Wi. A union of disjoint imbedded annuli, each hav-

ing one end in ∂M − P and the other end an essential loop in P , is
admissibly isotopic into

⋃
Wi.

(iv) If γ is an essential loop in the frontier of
⋃
Wi and γ is homotopic in

M into P , then γ is homotopic in the frontier of
⋃
Wi into P .

Proof. Proposition 5.3 shows that if we add to X all adherent components of
the complements of its components, then the result is a disjoint union

⋃
Wi

of refined relative compression body neighborhoods of a subcollection of the
free sides of X, and this union contains all free sides. It shows moreover
that the remaining free sides are as described in statement (ii).
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For the uniqueness in (i), one may adapt the proof of theorem 6.1, but
instead we will argue by induction on the number of Wi that are not collar
neighborhoods of a free face of (M,P ). If all are collars, then the unique-
ness is simply the uniqueness of collar neighborhoods. For the induction,
suppose that W1 is not a collar neighborhood of a free face, and that that
W ′1, . . . , W

′
s is a second collection as in (i). By theorem 6.1, we may assume

that W1 = W ′1. Let (M1, P1) = (M −W1,M −W1 ∩ P ), which has the
constituents G1, . . . , Gn of W1 among its free faces. Notice that since W1

satisfied the hypotheses of theorem 6.1, any collar neighborhood of a Gk
in M1 satisfies these same hypotheses, so is a refined relative compression
body neighborhood of Gk in M1. The Wi and W ′j might not be refined rela-
tive compression body neighborhoods in (M1, P1); they satisfy conditions (i)
and (iii) of theorem 6.1, but might fail condition (ii) since adherent com-
ponents containing some of the Gk might be created when W1 is removed.
Let Yi and Y ′i be obtained from Wi and W ′i by adding in any such adherent
components. For any Gk not contained in one of the Yi, add another Y`
which is a collar neighborhood of Gk in M1, and similarly for each Gk not
contained in one of the Y ′j . By induction, the union of the Yi is admissibly
ambiently isotopic in (M1, P1) to the union of the Y ′i , so we assume that
the unions are equal. This shows that the Y` that are collar neighborhoods
of Gk’s correspond to the Y ′` that are collar neighborhoods of Gk’s. The
remaining Gk must lie in adherent components of both the Wi and the W ′i ;
by uniqueness of collar neighborhoods, we may assume that these adherent
components are equal. Then, the union of the Wi for i ≥ 2 equals the union
of the W ′i for i ≥ 2 and the uniqueness is established.

Now
⋃
Wi contains a refined relative compression body neighborhood of

each free face of (M,P ), either one of the Wi or a collar neighborhood.
Consequently, it contains a pre-refined compression submanifold X. State-
ment (iii) follows immediately from proposition 5.1. Statement (iv) follows
directly from theorem 6.1.
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