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Abstract. We examine free orientation-reversing group actions on ori-
entable handlebodies, and free actions on nonorientable handlebodies.
A classification theorem is obtained, giving the equivalence classes and
weak equivalence classes of free actions in terms of algebraic invari-
ants that involve Nielsen equivalence. This is applied to describe the
sets of free actions in various cases, including a complete classification
for many (and conjecturally all) cases above the minimum genus. For
abelian groups, the free actions are classified for all genera.

The orientation-preserving free actions of a finite group G on 3-dimension-
al orientable handlebodies have a close connection with a long-studied con-
cept from group theory, namely Nielsen equivalence of generating sets. The
basic result is that the orientation-preserving free actions of G on the han-
dlebody of genus g, up to equivalence, correspond to the Nielsen equivalence
classes of n-element generating sets of G, where n = 1 + (g − 1)/|G|. This
has been known for a long time; it is implicit in work of J. Kalliongis and A.
Miller in the 1980’s, as a direct consequence of theorem 1.3 in their paper
[7] (for free actions, the graph of groups will have trivial vertex and edge
groups, and the equivalence of graphs of groups defined there is readily seen
to be the same as Nielsen equivalence on generating sets of G). As far as
we know, the first explicit statement detailing the correspondence appears
in [13], which also contains various applications and calculations using it.

In this paper, we extend the theory from [13] to free actions that contain
orientation-reversing elements, and to free actions on nonorientable handle-
bodies. The orbits of a certain group action on the collection Gn of n-element
generating sets are the Nielsen equivalence classes, and this action extends
to an action on a set Gn × Vn, in such a way that the orbits correspond
to the equivalence classes of all free G-actions on handlebodies of genus
1+(n−1)|G|. This correspondence is given as theorem 1.1, which is proven
in section 4 after presentation of preliminary material on Nielsen equiva-
lence in section 2, and on “uniform homeomorphisms” in section 3. From
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theorem 1.1, more specific results are derived in section 5 for orientation-
reversing free actions on orientable handlebodies, and in section 6 for free
actions on nonorientable handlebodies. These are illustrated by several cal-
culations for specific groups, and in section 7 we use the results to classify all
free actions of abelian groups on handlebodies, extending the classification
of orientation-preserving actions given in [13].

We should mention that nonfree actions on handlebodies have been ex-
amined in considerable depth. For nonfree actions, the natural structure on
the quotient object is that of an orbifold, rather than just a handlebody, and
the resulting analysis is much more complicated. A general theory of actions
was given in [12] and the aforementioned [7], and the actions on very low
genera were extensively studied in [8]. Actions with the genus small relative
to the order of the group were investigated in [14] and [17], and the special
case of orientation-reversing involutions is treated in [6]. The first focus on
free actions seems to be [16], which examines free actions of the cyclic group.

The authors gratefully acknowledge the support of the U. S. National
Science Foundation, the Ministerio de Educación y Ciencia of Spain, and
the Mathematical Research and Conference Center in Bȩdlewo of the Polish
Academy of Sciences.

1. The classification theorem

In this paper, G will always denote a finite group. A G-action on a
space X is an injective homomorphism Φ: G → Homeo(X). Two actions
Φ1,Φ2 : G → Homeo(X) are said to be equivalent if they are conjugate as
representations, that is, if there is a homeomorphism h : X → X such that
hΦ1(g)h−1 = Φ2(g) for each g ∈ G. They are weakly equivalent if their
images are conjugate, that is, if there is a homeomorphism h : X → X so
that hΦ1(G)h−1 = Φ2(G). Equivalently, there is some automorphism α of
G so that hΦ1(g)h−1 = Φ2(α(g)) for all g. In words, equivalent actions are
the same after a change of coordinates on the space, while weakly equivalent
actions are the same after a change of coordinates on the space and a change
of the group by automorphism. If X is homeomorphic to Y , then the sets
of equivalence (or weak equivalence) classes of actions on X and on Y can
be put into correspondence using any homeomorphism from X to Y .

To state the classification theorem, we first fix a basis x1, . . . , xn of Fn

(where Fn is the free group of rank n). Such a selection gives an identifi-
cation of the direct product Gn with the set Hom(Fn, G) of group homo-
morphisms from Fn to G, by regarding (g1, . . . , gn) as the homomorphism
γ(g1, . . . , gn) : Fn → G that sends xi to gi. An action of Aut(Fn)× Aut(G)
on Gn is then defined by (φ, α) · γ = α ◦ γ ◦ φ−1. Now, write Vn for the
direct sum ⊕n

i=1C2, where C2 = {−1, 1}. Using the selected basis x1, . . . , xn

of Fn, identify Vn with Hom(Fn, C2) by identifying an element (v1, . . . , vn)
of Vn with the homomorphism ω(v1, . . . , vn) that sends xi to vi. We define
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an Aut(Fn)×Aut(G)-action on Gn × Vn by putting

(φ, α) · (γ, ω) = (α ◦ γ ◦ φ−1, ω ◦ φ−1) .

The elements of the set Gn of generating n-vectors of G correspond to the
surjective elements of Hom(Fn, G), so Gn and Gn × Vn are invariant under
the Aut(Fn)- and Aut(Fn)×Aut(G)-actions respectively.

Under the action of Aut(Fn) (or Aut(Fn) × Aut(G)) on Vn the element
(1, . . . , 1) is fixed, so the subset Gn × {(1, . . . , 1)} is a union of orbits. Re-
stricted to the subset Gn × {(1, . . . , 1)}, the Aut(Fn) × Aut(G)-action can
be identified with the action originally defined on Gn.

In section 3 we will define a collection of handlebodies N(v1, . . . , vn) of
genus n, one for each element of Vn. It includes both orientable and nonori-
entable handlebodies. Given a free action Φ of G on a handlebody V , with
quotient a handlebody N of genus n, choose any N(v1, . . . , vn) that is home-
omorphic to N , and fix a homeomorphism k : N → N(v1, . . . , vn). Let W be
the covering of N(v1, . . . , vn) determined by the subgroup k#(π1(V )), where
k# is the isomorphism induced by k on the fundamental groups. A lift of k
to a homeomorphism from V to W identifies G with the group of covering
transformations of W . The free group Fn = π1(N(v1, . . . , vn)) has a basis
x1, . . . , xn (defined in section 3). Each xi determines a covering transfor-
mation gi ∈ G. We associate to Φ the pair ((g1, . . . , gn), (v1, . . . , vn)), which
we will abbreviate as (g, v). Since the xi generate Fn, the gi generate G,
so (g, v) is an element of Gn × Vn, where Gn denotes the elements of Gn

whose elements form a generating set. The following theorem gives a com-
plete algebraic classification of free actions on orientable and nonorientable
handlebodies.

Theorem 1.1. Sending Φ to the orbit of the element (g, v) defines a bijec-
tion from the equivalence classes (respectively, weak equivalence classes) of
free G-actions on handlebodies of genus 1+ |G| (n−1) to the set of Aut(Fn)-
orbits (respectively, Aut(Fn)×Aut(G)-orbits) in Gn × Vn.

We call a G-action on a handlebody V orientation-preserving if V is ori-
entable and each element of G acts preserving orientation, and orientation-
reversing if V is orientable and some element of G acts reversing orien-
tation. We will see that the orbits contained in Gn × {(1, . . . , 1)} corre-
spond exactly to the equivalence classes (or weak equivalence classes) of
orientation-preserving free actions. This recovers the algebraic classification
of orientation-preserving actions given in [13, Theorem 2.3]. Corollary 5.2
characterizes the orientation-reversing actions in the context of theorem 1.1.
In section 6 we shall apply theorem 1.1 to the classification of actions on
nonorientable handlebodies.

As mentioned in the introduction, theorem 1.1 is proven in section 4
after presentation of preliminary material in sections 2 and 3. We should
mention that section 2, which presents the Aut(Fn)×Aut(G)-action on Gn

defined above in terms of the classical notion of Nielsen equivalence, is not
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absolutely essential to our work here. But it would be peculiar indeed to
omit this interpretation from our exposition, and moreover the language of
Nielsen equivalence is used in [13], so the interpretation is needed to clarify
how our present work recovers the orientation-preserving case.

From now on, the term action will mean a free action of a finite group on
a 3-dimensional handlebody Vg of genus g ≥ 1 (only the trivial group can
act freely on the handlebody of genus 0, the 3-ball). One may work in either
of the categories of piecewise-linear or smooth actions. We assume that one
of these two categories has been chosen, and that all maps, isotopies, etc. lie
in that category.

2. Nielsen equivalence

It will be convenient to define Nielsen equivalence in terms of group ac-
tions on sets. We write Ck for the cyclic group of order k ≥ 2, including
the infinite cyclic group C∞. Let U ∼= C2 ∗ C2 ∗ C2 ∗ C∞ be given by the
presentation

U = 〈t, u, v, w | t2 = u2 = v2 = 1〉.
For any group G and any positive integer n ≥ 2, an action of U on the n-fold
direct product Gn is defined by

t(g1, g2, . . . , gn) = (g−1
1 , g2, . . . , gn)

u(g1, g2, g3, . . . , gn) = (g−1
1 , g1g2, . . . , gn)

v(g1, g2, g3, . . . , gn) = (g2, g1, g3, . . . , gn)

w(g1, g2, . . . , gn) = (gn, g1, g2, . . . , gn−1) .

The orbits of this U-action on Gn are called Nielsen equivalence classes.
Note that if the elements of two Nielsen equivalent n-tuples are regarded

as subsets of G, then they generate the same subgroup of G. In particular,
if the entries of one of them generate G, the same is true for the other.

Conjugates of t by w allow one to replace any gi by its inverse. Conjugates
of v by w allow one to interchange any gi with any gi+1, and hence to effect
any permutation of the coordinates. Simple combinations of these with u
allow one to replace any gi by gig

±1
j or g±1

j gi for some j 6= i, keeping all
other coordinates fixed. On the other hand, each of the four generators
results from some sequence of these basic Nielsen “moves”. Thus Nielsen
equivalence is often described as the equivalence relation generated by these
basic moves.

By letting Aut(G) act on the left of Gn coordinatewise, we can extend
the U-action to a U×Aut(G)-action. This adds the additional basic Nielsen
move

α(g1, . . . , gn) = (α(g1), . . . , α(gn))

for any α ∈ Aut(G). The orbits of this U × Aut(G)-action are called weak
Nielsen equivalence classes.
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The next lemma shows that the action of U×Aut(G) on Gn always factors
through the action of Aut(Fn)×Aut(G) on Gn that we defined in section 1.
Consequently, the Nielsen equivalence classes in Gn are exactly the orbits of
this action.

Lemma 2.1. The orbits of the Aut(Fn)-action on Gn (respectively, the
Aut(Fn)×Aut(G)-action on Gn) are exactly the Nielsen equivalence classes
(respectively, the weak Nielsen equivalence classes). In fact, there is a sur-
jective homomorphism An : U → Aut(Fn) such that the action of an element
(u, α) ∈ U×Aut(G) equals the action of (An(u), α). Changing the choice of
basis for Fn changes An by an inner automorphism of Aut(Fn).

Proof. Define T ∈ Aut(Fn) by T (x1) = x−1
1 and Ti(xj) = xj for j > 1, and

similarly define U , V , and W corresponding to u, v, and w. It is straight-
forward to check that (t, α)(g1, . . . , gn) = (T, α)(g1, . . . , gn), and similarly
for the other three generators, so the action of U on Gn factors through
the image of the “capitalization” function An : U → Aut(Fn). Using well-
known generating sets for Aut(Fn), such as that of Nielsen’s presentation
[15] or the Fouxe-Rabinovitch presentation listed in [11], one checks that An

is surjective. The basis change remark is a straightforward check. �

The Aut(Fn)×Aut(G)-action on Gn × Vn can be regarded as extending
the definition of Nielsen equivalence in Gn to the set Gn × Vn. In the
next section, we will see how this extended equivalence will capture some
orientation information when we apply it to study actions on handlebodies.

3. Uniform homeomorphisms

We will use an idea which has appeared several times in the literature [1],
[10], [11] (the most relevant of these references is [11], since it also concerns
handlebodies). The quotient of a free action on a genus g handlebody is a
handlebody Vn of genus n = 1+(g−1)/|G| (see section 4). This handlebody
is regarded as one component of a disjoint union of a family of handlebod-
ies indexed by Vn, where the handlebody N(v1, . . . , vn) corresponding to
a vector (v1, . . . , vn) has the property that traveling around the ith handle
reverses the local orientation exactly when vi = −1. An n-tuple (g1, . . . , gn)
of elements that generate G determines a G-action on a handlebody with
quotient N(v1, . . . , vn) in the following way: G acts by covering transforma-
tions on the covering space of N(v1, . . . , vn) corresponding to the kernel of
the homomorphism π1(N(v1, . . . , vn)) → G that sends the generator corre-
sponding to the ith handle to gi.

A key property of this family of handlebodies is that any element of
Aut(π1(Vn)) can be realized, in an appropriate sense, by a “uniform” home-
omorphism of the family. The action of uniform homeomorphisms on the set
of components of the family corresponds exactly to the Aut(Fn)-action on
Vn defined in section 2. Uniform homeomorphisms overcome the technical
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problem that an automorphism of π1(Vn) need not preserve the orientability
of 1-handles and hence need not be induced by a self-homeomorphism of Vn.

The proof of the main technical result, theorem 1.1, shows that two pairs
((g1, . . . , gn), (v1, . . . , vn)) and ((g′1, . . . , g

′
n), (v′1, . . . , v

′
n)) in Gn × Vn lie in

the same Aut(Fn)-orbit exactly when there is a homeomorphism between
N(v1, . . . , vn) and N(v′1, . . . , v

′
n) that lifts to an equivalence between the

actions which have them as quotients and are determined by (g1, . . . , gn)
and (g′1, . . . , g

′
n).

Here is the construction from [11]. Fixing a positive integer n, let Rn be
a 1-point union of n circles. Write Fn for the free group π1(Rn). Let x1, . . . ,
xn be the standard set of generators of Fn, where xi is represented by a loop
that travels once around the ith circle.

To set notation, let Σ be a 3-ball, and in ∂Σ select 2n disjoint imbedded
2-disks D1, E1, D2, E2, . . . , Dn, En. Fix orientation-preserving imbeddings
Ji : D2 → Di and Ki : D2 → Ei. Let r : D2 → D2 send (x, y) to (x,−y). For
v = (v1, . . . , vn) ∈ Vn, construct a handlebody N(v) as follows. For each i,
let Hi be a copy of D2 × I and identify (x, y, 0) with Ji(x, y) and (x, y, 1)
with Kir

(1+vi)/2(x, y). The resulting 1-handle Hi is orientation-preserving
or orientation-reversing according as vi is 1 or −1.

Regard N(v) as a thickening of Rn, in which the join point is the center ∗
of Σ and the loop of Rn that represents xi goes once over Hi from Di to Ei

and does not meet any other Hj . Traveling around this ith loop preserves the
local orientation at ∗ if and only vi = 1. Thus N(1, . . . , 1) is orientable, while
all other N(v) are nonorientable and are homeomorphic to N(−1, . . . ,−1).
We denote the disjoint union of the N(v) by N .

We will now define a homeomorphism of N called a uniform slide homeo-
morphism. For each N(v), write N ′(v) for the closure of N(v)−H1. Choose
a loop α in ∂N ′(v), based at the origin in E1, that travels through ∂Σ to
∂E2, once over H2 to ∂D2, and returns in ∂Σ to the origin of E1. There is
an isotopy Jt of N ′(v) such that

(1) J0 is the identity of N ′(v),
(2) each Jt the identity outside a regular neighborhood of E1 ∪ α,
(3) during Jt, E1 moves once around α, traveling over H2 from E2 to

D2, and
(4) the restriction of J1 to E1 is the identity or r, according as J1 pre-

serves or reverses the local orientation on E1.

A homeomorphism of N is defined by sending N(v) to N(w) using J1 on
N ′(v) and the identity on H1. Here, (w1, . . . , wn) = (v1v2, v2, . . . , vn), since
the r in item (4) will be needed exactly when v2 = −1. There are many
choices of sliding loop α, nonisotopic in ∂N ′(v), so the homeomorphism of
N is by no means uniquely defined up to isotopy.

With respect to the identifications π1(Rn) = π1(N(v)) given by the inclu-
sions of Rn into N(v) and N(w), the homeomorphism from N(v) to N(w)
induces the automorphism ρ of Fn that sends x1 to x1x2 and fixes all other
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xj . Note that (w1, w2, . . . , wn) = ρ · (v1, v2, . . . , vn), for the action of ρ on
(v1, v2, . . . , vn) defined in section 2.

This particular basic slide homeomorphism is called sliding the right end
(that is, E1) of H1 over H2. Similarly, one can uniformly slide the right or
left end of any Hi over any other Hj , either from Ej to Dj or from Dj to Ej ,
obtaining homeomorphisms whose effect on components of N agrees with
the action of their induced automorphisms on Vn. These are called uniform
slide homeomorphisms of N .

A uniform interchange of Hi and Hj is defined using an isotopy Jt that in-
terchanges both Di and Dj , and Ei and Ej . It sends N(. . . , vi, . . . , vj , . . .) to
N(. . . , vj , . . . , vi, . . .), and induces the automorphism of Fn that interchanges
xi and xj . Using a Jt that interchanges Di and Ei defines a uniform spin
of the ith handle. This preserves each component of N , and induces the
automorphism that sends xi to x−1

i .
There are two other kinds of basic uniform homeomorphisms, both of

which preserve each N(v) and induce the identity automorphism on Fn.
Choose a reflection of Σ that preserves ∗ and restricts to r on each Di and
Ei. Define a homeomorphism of N(v) by taking r × 1I on each Hi and
the chosen reflection on Σ. The resulting uniform homeomorphism of N is
denoted by R. Finally, any Dehn twist about a properly imbedded 2-disk in
N is a basic uniform homeomorphism.

In all cases, the action of the basic uniform homeomorphism on the com-
ponents of N agrees with the action on Vn of the automorphism it induces
on Fn with respect to the identifications Fn = π1(Rn) = π1(N(v)).

A uniform homeomorphism of N is a homeomorphism (freely) isotopic
to a composition of the basic uniform homeomorphisms we have defined
here. The inverse of a basic uniform homeomorphism is a basic uniform
homeomorphism, so the inverse of any uniform homeomorphism is uniform.

By abuse of notation, we write ∗ for the union of the basepoints of the
components of N , and by M(N , ∗) the group of isotopy classes of homeo-
morphisms of N that preserve this subset. The uniform homeomorphisms
that preserve ∗ form a subgroup U(N , ∗) of M(N , ∗), called the uniform
mapping class group. We mention that although we have given infinitely
many generators, it can be shown that U(N , ∗) is finitely generated. This
is proven in [11].

For v ∈ Vn, let St(N(v), ∗) ⊆ U(N , ∗) be the stabilizer of the component
N(v) under the action of U(N , ∗) on the components of N . We have the
following result from [11]:

Theorem 3.1. The restriction St(N(v), ∗) → M(N(v), ∗) is surjective.
Any homeomorphism N(v) → N(w) is isotopic to the restriction of a uni-
form homeomorphism.

Proof. The first statement is basically theorem 7.2.3 from [11], proven there
for compression bodies, which include handlebodies as a special case. The
restriction in [11] to mapping classes of local degree 1 at ∗ is not needed
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since we have included the reflection R among our uniform homeomor-
phisms. For the second statement, note first that the uniform homeomor-
phisms act transitively on the set of nonorientable components of N , so
given g : N(v) → N(w), there is a uniform homeomorphism u1 that carries
N(w) to N(v). (To see this, suppose that N(w) and N(v) are nonorientable
and choose some wi = −1. Slide the other handles of N(w) over the ith

handle as necessary to make wj = vj for j 6= i. If all these wj are now 1,
then wi = −1 = vi since N(w) and N(v) are nonorientable. If not, there is
some other wj = −1, and a slide of the ith handle over the jth can be used if
needed to change wi to equal vi.) By the first sentence of the theorem, the
composition u1 ◦g is isotopic to the restriction of a uniform homeomorphism
u2 that stabilizes N(v), so on N(v), g is isotopic to u−1

1 ◦ u2. �

4. The algebraic classification of actions

Suppose that Φ: G → Homeo(V ) is a free action on a handlebody V ,
possibly nonorientable. Its quotient N is also a handlebody. To see this,
recall that any torsionfree finite extension of a finitely generated free group
is free (by [9] any finitely generated virtually free group is the fundamental
group of a graph of groups with finite vertex groups, and if the group is
torsionfree, the vertex groups must be trivial), so π1(V/G) is free. Since
V is irreducible, so is V/G, and theorem 5.2 of [5] shows that V/G is a
handlebody.

From covering space theory, the action Φ determines an extension

1 −→ π1(V ) −→ π1(N) π−→ G −→ 1

where π(x) is defined by taking a representative loop for x, lifting it to
a path starting at the basepoint of V , and letting π(x) be the covering
transformation that sends the basepoint of V to the endpoint of the path.
Writing n for the genus of N , the Euler characteristic shows that 1+ |G| (n−
1) is the genus of V . The genus of N can be any n greater than or equal
to µ(G), the minimum number of elements in a generating set of G. In
particular, the genera of handlebodies on which G acts freely preserving
orientation are exactly 1 + |G|(n− 1) where n ≥ µ(G). The minimal genus
is 1 + |G|(µ(G)− 1).

In the remainder of this section, we will prove theorem 1.1. Recall that
in section 1, we associated to an action Φ of G on a handlebody V an
element (g, v) = ((g1, . . . , gn), (v1, . . . , vn)) of Gn × Vn. It was defined by
taking a homeomorphism k from the quotient handlebody V/G to some
N(v1, . . . , vn), letting W be the covering of N(v1, . . . , vn) determined by
the subgroup k#(π1(V )), and putting gi equal to the lift of the element
xi ∈ π1(N(v1, . . . , vn)) to a covering transformation gi of W .

First we address the issues of well-definedness. The subgroup k#(π1(V )) is
well-defined up to conjugacy, so W depends only on the choice of k. Chang-
ing the choice of basepoint in W or the lift of k changes ((g1, . . . , gn), v) to
((hg1h

−1, . . . , hgnh−1), v) for some h ∈ G. Choose an element h̃ ∈ Fn with



ORIENTATION-REVERSING FREE ACTIONS ON HANDLEBODIES 9

γ(g1, . . . , gn)(h̃) = h, and let µ(h̃) ∈ Aut(Fn) be the automorphism that con-
jugates by h̃−1. Then ((hg1h

−1, . . . , hgnh−1), v) = (µ(h̃), 1)·((g1, . . . , gn), v),
so these elements lie in the same Aut(Fn)-orbit.

Suppose a different N(v′) and k′ : N → N(v′) are used to associate a pair
(g′, v′) = ((g′1, . . . , g

′
n), (v′1, . . . , v

′
n)) to Φ. By theorem 3.1, k′ ◦ k−1 : N(v) →

N(v′) is the restriction of a uniform homeomorphism u. We claim that
(u#, 1) ∈ Aut(Fn) carries (g, v) to (g′, v′). Since the action of U(N , ∗)
on the components of N induces the action of Aut(Fn) on Vn, it suf-
fices to show that γ(g1, . . . , gn) ◦ u−1

# = γ(g′1, . . . , g
′
n), that is, that g′i =

γ(g1, . . . , gn)(u−1
# (xi)).

Let (W,w) and (W ′, w′) be the covering spaces of N(v1, . . . , vn) and
N(v′1, . . . , v

′
n) respectively, such that lifting xi to W and W ′ produces gi

and g′i respectively. Let ũ : (W,w) → (W ′, w′) be the lift of u|N(v). Now,
g′i is the covering transformation that carries w′ to the endpoint of the lift
of xi starting at w′. Consider (u|N(v))−1(xi). Its lift to W starting at w
is carried by ũ to the lift of xi in W ′ starting at w′. That is, the covering
transformation of W corresponding to g′i under ũ is determined by u−1

# (xi),
so is γ(g1, . . . , gn)(u−1

# (xi)). This verifies the claim.
Equivalent actions produce equivalent associated elements. For if Φ is

equivalent to another G-action Φ′ on V ′, with quotient N ′, then there is
a homeomorphism j : N ′ → N that lifts to an equivariant homeomorphism
from V ′ to V . Since we may use k ◦ j as the homeomorphism from N ′ to
N(v) to define the element associated to Φ′, the associated pairs are in the
same Aut(Fn)-orbit.

Conversely, suppose that the pairs (g, v) and (g′, v′) associated to the
actions Φ and Φ′ are in the same Aut(Fn)-orbit. Let φ ∈ Aut(Fn) carry one
to the other. By theorem 3.1, there is a uniform homeomorphism u ∈ U(N )
inducing φ, which must carry N(v1, . . . , vn) to N(v′1, . . . , v

′
n). The condition

that γ◦φ−1 = γ′ ensures that u lifts to a G-equivariant homeomorphism from
(W,w) to (W ′, w′), so the actions on these covering spaces are equivalent.
Since the actions on W and W ′ are respectively equivalent to the original
actions on V and V ′, the original actions were equivalent.

Finally, being able to apply an automorphism of G at any point in the
process changes equivalence to weak equivalence, and enlarges the choices
of (g, v) to the Aut(Fn)×Aut(G)-orbit.

5. Actions on orientable handlebodies

From theorem 1.1, an explicit representative of the equivalence class of G-
actions corresponding to the Aut(Fn)-orbit of the element (g, v) of Gn ×Vn

is the covering space W of N(v) whose fundamental group is the kernel of
γ = γ(g1, . . . , gn) : Fn → G. Since vi tells the orientability of xi in N(v), a
covering space is orientable if and only if it corresponds to a subgroup in
the kernel of ω = ω(v1, . . . , vn). Therefore there is a simple criterion for W
to be orientable:
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Proposition 5.1. Let W be the covering space of N(v) corresponding to the
kernel of γ. Then W is orientable if and only if there is ω ∈ Hom(G, C2)
such that ω : Fn → C2 factors as ω◦γ : Fn → G → C2. Equivalently, sending
gi to vi defines a homomorphism from G to C2.

Applying theorem 1.1, we obtain:

Corollary 5.2. Under the correspondence of theorem 1.1, the equivalence
classes (respectively, weak equivalence classes) of free G-actions on ori-
entable handlebodies of genus 1+|G| (n−1) correspond to the set of Aut(Fn)-
orbits (respectively, Aut(Fn)×Aut(G)-orbits) in Gn ×Vn for which sending
gi to vi (on one, hence on any representative) determines a homomorphism
ω from G to C2.

It will be useful to make explicit the induced action of Aut(Fn)×Aut(G)
on these ω. In the statement of proposition 5.3, we call ω the element of
Hom(G, C2) associated to (g, v).

Proposition 5.3. If ω ∈ Hom(G, C2) is associated to (g, v) ∈ Gn × Vn

and (φ, α) ∈Aut(Fn)×Aut(G), then ω ◦ α−1 is the element of Hom(G, C2)
associated to (φ, α) · (g, v).

Proof. Regarding (g, v) as (γ, ω) we have (φ, α)·(γ, ω) = (α◦γ◦φ−1, ω◦φ−1).
Since ω◦φ−1 = (ω◦α−1)◦(α◦γ ◦φ−1), its associated element is ω◦α−1. �

The classification up to equivalence of free actions on orientable handle-
bodies is no more difficult than the classification of generating n-vectors of
G up to Nielsen equivalence. For n ≥ µ(G) let En denote the set of Nielsen
equivalence classes of generating n-vectors of G. We write Epi(G, C2) for
the set of surjective homomorphisms from G to C2, that is, all elements of
Hom(G, C2) except the trivial homomorphism 0.

Theorem 5.4. For n ≥ µ(G), the set of equivalence classes of free G-actions
on the orientable handlebody of genus 1 + |G|(n− 1) corresponds bijectively
to En × Hom(G, C2), with the orientation-preserving actions corresponding
to En × {0} and the orientation-reversing actions corresponding to En ×
Epi(G, C2).

Proof. By theorem 1.1, every action is equivalent to the action of G by
covering transformations on a covering space W of some N(v), and the
equivalence classes of actions correspond to the Aut(Fn)-orbits of Gn × Vn.
Restricting to the Gn-coordinate defines a function Gn × Vn → Gn which is
Aut(Fn)-equivariant, so there is an induced function on the sets of Aut(Fn)-
orbits. Fix an Aut(Fn)-orbit of Gn and a generating n-vector (h1, . . . hn)
that represents it. Each Aut(Fn)-orbit of Gn × Vn that restricts to this
element contains a representative of the form ((h1, . . . , hn), (v1, . . . , vn)).
The element ((h1, . . . , hn), (1, . . . , 1)) is not equivalent to any other such ele-
ment, and represents the unique element that corresponds to an orientation-
preserving action. By corollary 5.2, ((h1, . . . , hn), (v1, . . . , vn)) corresponds
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to an orientation-reversing action if and only if sending hi to vi defines a
surjective homomorphism from G to C2. By proposition 5.3, this homo-
morphism is an invariant of the equivalence class. On the other hand, each
element ω of Epi(G, C2) determines a choice of v for which ω = ω(v), so the
equivalence classes of orientation-reversing actions that restrict to the orbit
of (h1, . . . , hn) in Gn correspond to Epi(G, C2). �

For classification of orientation-reversing actions up to weak equivalence,
there is an added difficulty. An Aut(Fn)×Aut(G)-orbit of elements of Gn is
a union of a collection of Aut(Fn)-orbits, say {C1, . . . , Cr}. It produces one
weak equivalence class of orientation-preserving actions, but for orientation-
reversing actions, one must determine the Aut(G)-orbits of {C1, . . . , Cr} ×
Epi(G, C2). This seems to be a subtle problem, in general.

It often happens, however, that Gn consists of only one Aut(Fn)-orbit, in
which case the action of Aut(G) on {C1}×Epi(G, C2) can be identified with
the action on Epi(G, C2). Thus in this case, the classification of actions on
the orientable handlebody Vg is easy:

Theorem 5.5. Suppose that all elements of Gn are Nielsen equivalent, and
put g = 1 + |G|(n− 1). Then

(1) There is only one equivalence class of orientation-preserving free G-
actions on Vg.

(2) The set of weak equivalence classes of orientation-reversing free ac-
tions of G on Vg corresponds bijectively to the set of Aut(G)-orbits
of Epi(G, C2).

Conjecturally, all generating n-vectors are equivalent whenever G is finite
and n > µ(G) (see the discussion in [13]). So the previous theorem might
give a complete classification of all actions on orientable handlebodies above
the minimal genus. The conjecture is known for many classes of groups,
such as solvable groups [2], PSL(2, p) (p prime) [4], PSL(2, 3p) (p prime)
[13], PSL(2, 2m) [3], and the Suzuki groups Sz(22m−1) [3].

A nice example is the quaternion group Q of order 8. One can check
that for any n ≥ 2 = µ(Q), any two generating n-vectors of Q are Nielsen
equivalent. So for any k ≥ 1, there is one equivalence class of orientation-
preserving free Q-action on V1+8k, and there are three equivalence classes of
orientation-reversing free Q-actions, corresponding to the nonzero elements
of Hom(Q,C2) = H1(Q; Z/2) = Z/2 ⊕ Z/2. Under the Aut(Q)-action on
Epi(Q,C2), all three elements lie in the same orbit, so there is only one weak
equivalence class of orientation-reversing free Q-action on V1+8k.

Let us finish this section with another example. For r ≥ 3 let Dr be the di-
hedral group of 2r elements and presentation

〈
s1, s2 : s2

1 = s2
2 = (s1s2)r = 1

〉
.

Suppose first that n > 2 = µ(Dr). Since Dr is solvable, there is only
one Aut(Fn)-orbit in Gn, and hence there is only one equivalence class
of orientation-preserving actions. If r is even, there are three classes of
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orientation-reversing actions, represented by the elements

{((s1, s2, 1, ..., 1), (−1,−1, 1, ..., 1)), ((s1, s2, 1, ..., 1), (1,−1, 1, ..., 1)),

((s1, s2, 1, ..., 1), (−1, 1, 1, ..., 1))}

of Gn×Epi(Dr, C2). If r is odd, the second two do not define homomorphisms
from Dr to C2, and there is only one equivalence class. When r is even, there
are two weak equivalence classes of orientation-reversing actions, represented
by:

{((s1, s2, 1, ..., 1), (−1,−1, 1, ..., 1)), ((s1, s2, 1, ..., 1), (1,−1, 1, ..., 1))}.

Suppose now that n = 2. A set of representatives of the Aut(F2)-orbits in G2

is {(s1, (s1s2)m) : 1 ≤ m < r/2, (m, r) = 1} (see theorem 4.5 of [13]). There
are ϕ(r)/2 classes of orientation-preserving actions (where ϕ is the Euler
function) forming one weak equivalence class. If r is is odd there are ϕ(r)/2
classes of orientation-reversing actions. If r is even there are 3ϕ(r)/2 classes
of orientation-reversing actions forming ϕ(r) weak equivalence classes.

6. Actions on nonorientable handlebodies

There is a simple algebraic criterion for G to act freely on the nonori-
entable handlebody Nm of genus m. Recall that H1(G; Z/2) can be identi-
fied with Hom(G, C2).

Proposition 6.1. G acts freely on Nm if and only if m = 1 + |G|(n − 1)
where n ≥ µ(G) and n > rkH1(G; Z/2).

Proof. If n < µ(G) then Gn is empty and G does not act freely on any
handlebody of genus n, so we assume that n ≥ µ(G). According to corol-
lary 5.2, an element ((h1, . . . , hn), (v1, . . . , vn)) ∈ Gn × Vn represents an
orbit corresponding to an action on a nonorientable handlebody if and only
if sending hi to vi does not define a homomorphism from G to C2. So Nm

has no free action exactly when all of the 2n choices for v define homo-
morphisms. Since rk H1(G; Z/2) ≤ µ(G) ≤ n, the latter is equivalent to
rkH1(G; Z/2) = n. �

For the quaternion group Q considered in section 5, we have 2 = µ(Q) =
rkH1(Q; Z), so Q acts freely on V9, but not on N9.

We may combine proposition 6.1 with theorem 5.4 to determine the genera
on which G can act:

Corollary 6.2. Let A = {1 + |G|(n− 1) | n ≥ µ(G)}. Then
(1) G acts freely preserving orientation on Vm if and only if m ∈ A.
(2) G acts freely reversing orientation on Vm if and only if m ∈ A and

rkH1(G; Z/2) > 0.
(3) G acts freely on Nm if and only if m ∈ A and either m > 1 +

|G|(µ(G)− 1) or rkH1(G; Z/2) < µ(G).
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There is a version of theorem 5.5 for actions on nonorientable handlebod-
ies.

Theorem 6.3. Suppose that n > µ(G) and that all generating n-vectors of
G are Nielsen equivalent. Put m = 1 + |G|(n− 1). Then, all free actions of
G on Nm are equivalent.

Proof. Fix a generating set h1, . . . , hn−1 with n− 1 elements. Since all gen-
erating n-vectors are Nielsen equivalent, each Aut(Fn)-orbit of Gn ×Vn has
a representative of the form ((h1, . . . , hn−1, 1), v). Fix such an element cor-
responding to an action on Nm. Suppose first that vn = −1. For any i with
vi = 1, the basic Nielsen move sending hi to hihn = hi changes vi to vivn =
−1. So ((h1, . . . , hn−1, 1), v) is equivalent to ((h1, . . . , hn−1, 1), (−1, . . . ,−1)).
Suppose that vn = 1. By corollary 5.2, sending each hi to vi does not de-
fine a homomorphism to C2, so there is some product hε1

i1
· · ·hεk

ik
= 1, with

all εi = ±1, for which vε1
i1
· · · vεk

ik
= −1. A sequence of k basic Nielsen

moves replacing hn by hnh
εj

ij
shows that ((h1, . . . , hn−1, 1), (v1, . . . , vn−1, 1))

is equivalent to ((h1, . . . , hn−1, 1), (v1, . . . , vn−1,−1)), which we have seen is
equivalent to ((h1, . . . , hn−1, 1), (−1, . . . ,−1)). Therefore we have only one
Aut(Fn)-orbit of elements of Gn × Vn that corresponds to an action on a
nonorientable handlebody. �

By way of illustration, we return to our example of actions of Dr. If
r is odd then rk H1(Dr, Z2) = 1 and if r is even then rkH1(Dr, Z2) = 2.
We have µ(Dr) = 2, and corollary 6.2 shows that Dr acts on N2r+1 if and
only if r is odd. When r is odd, there are ϕ(m)/2 equivalence classes of
actions, represented by ((s1, (s1s2)m), (−1,−1)) where m is relatively prime
to r and 1 ≤ m < r/2. These form one weak equivalence class. When
n > 2, there is one equivalence class of actions on N1+2r(n−1) represented by
((s1, s2, 1, . . . , 1), (−1,−1,−1, . . . ,−1)).

As we noted in section 5, it is conjectured that all generating n-vectors
are equivalent whenever G is finite and n > µ(G), so theorem 6.3 might
classify all actions on Nm when m > 1+ |G|(µ(G)−1). The classification of
actions on the nonorientable handlebody of genus 1 + |G|(µ(G) − 1) seems
to be an interesting general problem.

7. Actions of abelian groups

In this section, we will completely classify free actions of abelian groups
on handlebodies.

Throughout this section, we assume that G is abelian. For now, write G
as Cd1 ⊕ · · · ⊕ Cdn where di+1|di for 1 ≤ i < n. We have µ(G) = n, since
clearly µ(G) ≤ n, while G⊗ Cdn

∼= Cn
dn

requires n generators.
Theorem 4.1 of [13] tells the equivalence classes of generating µ(G)-

vectors. Fix a generator si for Cdi
. Each Aut(Fn)-orbit in Gn×Vn contains

exactly one element of the form (s1, . . . , sn−1, s
m
n ) where m is relatively prime

to dn and 1 ≤ m ≤ dn/2. There is only one weak equivalence class, since for
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each such m, there is an automorphism of G fixing si for i < n and sending
sn to sm

n .
It will be convenient to rewrite G as Ce1⊕· · ·⊕Cek

⊕Cd1⊕· · ·⊕Cd`
, where

the ei are even, the dj are odd, each ei+1|ei, each dj+1|dj , and d1|ek. We
write si for the selected generator of Cei and tj for the selected generator
of Cdj

. There is a corresponding decomposition Vn = Vk ⊕ V`, in which
we will denote elements by (v, w) = (v1, . . . , vk, w1, . . . , w`). Also, we write
|{e1, . . . , ek}| for the cardinality of the set {e1, . . . , ek}.

We now analyze the Aut(Fn)- and Aut(Fn) × Aut(G)-orbits on Gn ×
Vn. Using theorem 4.1 of [13] discussed above, every Aut(Fn)-orbit has
a representative of the form ((s1, . . . , sk, t1, . . . , t

m
` ), (v1, . . . , vk, w1, . . . , w`)),

or of the form ((s1, . . . , s
m
k ), (v1, . . . , vk)) if ` = 0. For such a representative,

choose a corresponding free action of G on a handlebody W .
Suppose first that W is orientable. Proposition 5.1 shows that all wj = 1.

Each choice of v determines a different homomorphism ω : G → C2, so all the
possible choices for v (an element of Vk) and m (an integer relatively prime
to d` with 1 ≤ m ≤ d`/2, or relatively prime to to ek with 1 ≤ m ≤ ek/2
if ` = 0) determine inequivalent actions. As in theorem 5.4, the choices
with v = (1, . . . , 1) are the orientation-preserving actions, and all others are
orientation-reversing.

Still assuming that W is orientable, we consider weak equivalence. If α
is the automorphism of G that sends t` to tm` (or sk to sm

k , when ` = 0)
then the action of (1, α) sends ((s1, . . . , sk, t1, . . . , t`), (v1, . . . , vk, 1, . . . , 1)) to
((s1, . . . , sk, t1, . . . , t

m
` ), (v1, . . . , vk, 1, . . . , 1)) (or ((s1, . . . , sk), (v1, . . . , vk)) to

((s1, . . . , s
m
k ), (v1, . . . , vk))), so for weak equivalence we may eliminate the

orbit representatives with m 6= 1. In particular, there is only one weak
equivalence class of orientation-preserving actions. Suppose the action is
orientation-reversing, so that some vj = −1. Choose the largest such j.

Suppose that vi = 1 for some ei for which ej |ei. Let α be the automor-
phism of G that sends si to sisj and fixes all other generators, and let ρ be
the automorphism of Fn that sends xi to xixj and fixes all other generators.
We have (ρ, α) · ((s1, . . . , sk, t1, . . . , t`), (v1, . . . , vi, . . . , vj , . . . vk, 1, . . . , 1)) =
((s1, . . . , sk, t1, . . . , t`), (v1, . . . , vivj , . . . , vj , . . . vk, 1, . . . , 1)). Repeating this
for all such i, we may make vi = −1 whenever ej |ei; that is, after possibly
reselecting j to a larger value with the same value of ej , we may assume that
vi = −1 for every i ≤ j, vi = 1 for every i > j, and that ej+1 < ej (or j = k).
Taking only representatives with this property reduces our collection of rep-
resentatives of Aut(Fn)×Aut(G)-orbits to only |{e1, . . . , ek}| elements. To
check that no two of these can be in the same orbit, we observe that the ker-
nels of the ω for these different elements are not isomorphic. Alternatively
we may think in terms of actions: For the action defined by an element
in this form, there is a primitive element in π1(N(v)) that determines an
orientation-reversing covering transformation of W , and whose ej-th power
lifts to an orientation-preserving loop, and ej is the smallest integer with
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this property. For every action weakly equivalent to this one, ej must be
the smallest integer with this property.

Suppose now that W is nonorientable, and again consider an orbit repre-
sentative ((s1, . . . , sk, t1, . . . , t

m
` ), (v1, . . . , vk, w1, . . . , w`)) ∈ Gn×Vn. Propo-

sition 5.1 shows that some wj = −1. By basic Nielsen moves replacing an
si (or a ti) by sitj (or titj) dj times, we may make every vi and every wi

equal to −1 (in case j = `, use tm` rather than t`). Therefore the equivalence
classes of actions correspond to the choices for m, and there is only one weak
equivalence class.

We now collect these observations.

Theorem 7.1. Let G = Ce1⊕· · ·⊕Cek
⊕Cd1⊕· · ·⊕Cd`

, as above. If ek = 2,
put N = 1, otherwise put N = ϕ(ek)/2 if ` = 0 and N = ϕ(d`)/2 if ` > 0.
Then the free actions on handlebodies of minimal genus 1 + |G|(k + ` − 1)
are as follows.

(1) For orientation-preserving actions, there are N equivalence classes,
forming one weak equivalence class.

(2) For orientation-reversing actions, there are (2k − 1)N equivalence
classes, forming |{e1, . . . , ek}| weak equivalence classes.

(3) If ` = 0, then G does not act freely on the nonorientable handlebody.
If ` > 0, then there are N equivalence classes, forming one weak
equivalence class.

For actions above the minimal genus, we have:

Theorem 7.2. For n > k + `, G acts freely on the orientable and nonori-
entable handlebodies of genus 1 + |G|(n− 1), with the following equivalence
classes.

(1) For orientation-preserving actions, there is one equivalence class.
(2) For orientation-reversing actions, there are 2k−1 equivalence classes,

forming |{e1, . . . , ek}| weak equivalence classes.
(3) For actions on the nonorientable handlebody, there is one equivalence

class.

Proof. Since G is solvable, [2] shows that all generating n-vectors Nielsen
are equivalent to (s1, . . . , sk, t1, . . . , t`, 1, . . . , 1). Therefore theorem 5.4 gives
part (1) and theorem 6.3 gives (3). For (2), the proof is then essentially the
same as that of theorem 7.1; if one allows some of the di to equal 1, in effect
making k + ` = n, then the proof is almost line-for-line unchanged. �
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