Formula Sheet

$f(t)$	$\mathcal{L}(f(t))$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
$t^{a}(a>-1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}$
$\cos (k t)$	$\frac{\frac{s}{s}}{s^{2}+k^{2}}$
$\sinh (k t)$	$\frac{k}{s^{2}-k^{2}}$
$\cosh (k t)$	$\frac{s}{s} s^{2}-k^{2}$
$u(t-a)$	$\frac{e^{-a s}}{s}$

The above Laplace transforms are valid for $s>0$, with the exception of the Laplace transforms of $\sinh (k t)$ and $\cosh (k t)$ which are valid for $s>|k|$ and the Laplace transform of $e^{a t}$ which is valid for $s>a$.

$$
\begin{gathered}
\mid x \\
\begin{array}{|c|c|}
\hline \hline n+1 \text { (for integer } n \geq 0) & \Gamma(x) \\
\hline 1 / 2 & \sqrt{\pi} \\
\hline 3 / 2 & \frac{1}{2} \sqrt{\pi} \\
\hline 5 / 2 & \frac{3}{4} \sqrt{\pi} \\
\hline 7 / 2 & \frac{15}{8} \sqrt{\pi} \\
\hline \mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t \\
\mathcal{L}\left(f^{\prime}(t)\right)=s \mathcal{L}(f(t))-f(0) \\
\mathcal{L}\left(f^{(n)}(t)\right)=s^{n} \mathcal{L}(f(t))-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0) \\
\mathcal{L}\left(\int_{0}^{t} f(\theta) d \theta\right)=\frac{\mathcal{L}(f(t))}{s} \\
F(s)=\mathcal{L}(f(t)) \Longrightarrow F(s-a)=\mathcal{L}\left(e^{a t} f(t)\right) \\
f(t) * g(t)=\int_{0}^{t} f(\theta) g(t-\theta) d \theta \\
\mathcal{L}(-t f(t))=\frac{d F(s)}{d s} \\
\mathcal{L}\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(\sigma) d \sigma
\end{array}
\end{gathered}
$$

$\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s),($ valid for $s>c+a$ if $\mathcal{L}(f(t))=F(s)$ is valid for $s>c)$

This page intentionally left blank

MATH 3113-170 Test III
 Dr. Darren Ong

June 22, 2015 1:00pm-2:15pm

Answer the questions in the spaces provided on the question sheets. No
calculators allowed.

Name: \qquad

1. (5 points) Write down $\mathcal{L}(f(t))$ for the following functions $f(t)$ (no work needs to be shown for this problem, and no partial credit will be given).
(a) $f(t)=0$
(d) $f(t)=e^{-2 t}$
(b) $f(t)=u(t-3)$
(c) $f(t)=\sqrt[3]{t}$
(e) $f(t)=2-\sinh (3 t)$

Solution:

(a) 0
(b) $\frac{e^{-3 s}}{s}$
(c) $\frac{\Gamma(4 / 3)}{s^{4 / 3}}$
(d) $\frac{1}{s+2}$
(e) $\frac{2}{s}-\frac{3}{s^{2}-9}$
2. (5 points) Write down $\mathcal{L}^{-1}(F(s))$ for the following functions $F(s)$ (no work needs to be shown for this problem and no partial credit will be given).
(a) $F(s)=\frac{1}{s}$
(d) $F(s)=\frac{1}{s^{4}}$
(b) $F(s)=\frac{4 s-2}{s^{2}+25}$
(c) $F(s)=\frac{6 s}{s^{2}-16}$
(e) $F(s)=\frac{10}{s^{2}}-\frac{3}{s-1}$

Solution:

(a) 1
(b) $4 \cos (5 t)-\frac{2}{5} \sin (5 t)$
(c) $\frac{6}{4} \cosh (4 t)$
(d) $\frac{t^{3}}{6}$
(e) $10 t-3 e^{t}$
3. (16 points) Calculate

$$
\mathcal{L}^{-1}\left(\frac{-2}{s(s-4)}\right) .
$$

Solution:

We know that

$$
\mathcal{L}^{-1}\left(\frac{-2}{(s-4)}\right)=-2 e^{4 t} .
$$

Thus,

$$
\mathcal{L}^{-1}\left(\frac{-2}{s(s-4)}\right)=\int_{0}^{t}-2 e^{4 \theta} d \theta=-2\left[e^{4 \theta} / 4\right]_{\theta=0}^{t}=-e^{4 t} / 2+1 / 2 .
$$

This problem can also be solved using partial fractions or using convolution. I think this method is the easiest one however.
4. (16 points) Consider the system of differential equations

$$
\begin{gathered}
x^{\prime \prime}(t)+3 x(t)+y^{\prime}(t)=e^{t}, \\
x^{\prime \prime}(t)+y^{\prime \prime}(t)+2 y(t)=0 .
\end{gathered}
$$

Solution: Write down a fourth order differential equation that $x(t)$ satisfies. Your answer should be of the form

$$
x^{(4)}(t)+P(t) x^{\prime \prime \prime}(t)+Q(t) x^{\prime \prime}(t)+R x^{\prime}(t)+S(t) x(t)=F(t) .
$$

We rewrite this system using the D-notation.

$$
\begin{aligned}
& \left(D^{2}+3\right) x(t)+D y(t)=e^{t} \\
& D^{2} x(t)+\left(D^{2}+2\right) y(t)=0
\end{aligned}
$$

We need to eliminate the y-variable, so we multiply the first equation by $\left(D^{2}+2\right)$ and the second equation by D, and then subtract. We then get

$$
\left[\left(D^{2}+3\right)\left(D^{2}+2\right)-D^{3}\right] x(t)+\left[D\left(D^{2}+2\right)-\left(D^{2}+2\right) D\right] y(t)=\left(D^{2}+2\right) e^{t} .
$$

Since $\left(D^{2}+3\right)\left(D^{2}+2\right)-D^{3}=D^{4}-D^{3}+5 D^{2}+6$, and $D^{2} e^{t}=e^{t}$, translating back to the ' notation, we get

$$
x^{(4)}-x^{\prime \prime \prime}(t)+5 x^{\prime \prime}(t)+6 x(t)=3 e^{t}
$$

5. (16 points) Solve the initial value problem

$$
x^{\prime \prime}(t)+16 x(t)=0 ; x(0)=3, x^{\prime}(0)=0 .
$$

using Laplace transforms. You will get no credit for solving this problem using any other method.

Solution: Let us define $F(s)=\mathcal{L}(x(t))$. We have $\mathcal{L}\left(x^{\prime \prime}(t)\right)=s^{2} F(s)-3 s$, so taking Laplace transforms of the entire differential equation we get

$$
s^{2} F(s)-3 s+16 F(s)=0
$$

and so

$$
F(s)=\frac{3 s}{s^{2}+16}
$$

We then have

$$
x(t)=\mathcal{L}^{-1}(F(s))=3 \cos (4 t) .
$$

6. (16 points) Calculate the Laplace transform

$$
\mathcal{L}\left(\frac{1-e^{2 t}}{t}\right)
$$

You should first verify that the function makes sense at $t=0$.

Solution: Using L'Hopital's rule, we have

$$
\lim _{t \rightarrow 0} \frac{1-e^{2 t}}{t}=\lim _{t \rightarrow 0} \frac{-2 e^{2 t}}{1}=-2
$$

We know that

$$
\mathcal{L}\left(1-e^{2 t}\right)=\frac{1}{s}-\frac{1}{s-2} .
$$

We then have

$$
\begin{aligned}
\mathcal{L}\left(1-e^{2 t}\right) & =\int_{s}^{\infty} \frac{1}{\sigma}-\frac{1}{\sigma-2} \\
& =[\ln (\sigma)-\ln (\sigma-2)]_{\sigma=s}^{\infty} \\
& =\left[\ln \left(\frac{\sigma}{\sigma-2}\right)\right]_{\sigma=s}^{\infty} \\
& =\lim _{\sigma \rightarrow \infty} \ln \left(\frac{\sigma}{\sigma-2}\right)-\ln \left(\frac{s}{s-2}\right) \\
& =\ln \left(\lim _{\sigma \rightarrow \infty} \frac{\sigma}{\sigma-2}\right)-\ln \left(\frac{s}{s-2}\right) \\
& =\ln (1)-\ln \left(\frac{s}{s-2}\right) \\
& =-\ln \left(\frac{s}{s-2}\right) .
\end{aligned}
$$

7. (16 points)
(a) Calculate the inverse Laplace transform

$$
f(t)=\mathcal{L}^{-1}\left(\frac{e^{-2 s}}{(s+1)^{2}}\right)
$$

(b) What is the value of $f(1)$? Your answer should be a number.

Solution: We know that

$$
\mathcal{L}^{-1}\left(\frac{1}{s^{2}}\right)=t .
$$

Using the s-translation formula, we then have that

$$
\mathcal{L}^{-1}\left(\frac{1}{(s+1)^{2}}\right)=t e^{-t}
$$

Finally, using the t-translation formula, we get that

$$
f(t)=\mathcal{L}^{-1}\left(\frac{e^{-2 s}}{(s+1)^{2}}\right)=u(t-2)\left[(t-2) e^{-(t-2)}\right]
$$

Since $u(-1)=0$, we must have that $f(1)=0$.
8. (10 points) Is it true that if $\mathcal{L}(f(t))=F(s), \mathcal{L}(g(t))=G(s)$

$$
\mathcal{L}^{-1}(F(s) G(s))=f(t) g(t) ?
$$

If it is true, prove it. If it is false, provide a counterexample.

Solution: Take $f(t)=g(t)=1$. Then $F(s)=G(s)=1 / s$. However

$$
\mathcal{L}^{-1}\left(\frac{1}{s} \frac{1}{s}\right)=\mathcal{L}^{-1}\left(\frac{1}{s^{2}}\right)=t \neq 1 .
$$

