Formula Sheet

$f(t)$	$\mathcal{L}(f(t))$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
$t^{a}(a>-1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}$
$\cos (k t)$	$\frac{s}{s} \frac{k}{s^{2}+k^{2}}$
$\sinh (k t)$	$\frac{k}{s^{2}-k^{2}}$
$\cosh (k t)$	$\frac{s}{s^{2}-k^{2}}$

The above Laplace transforms are valid for $s>0$, with the exception of the Laplace transforms of $\sinh (k t)$ and $\cosh (k t)$ which are valid for $s>|k|$ and the Laplace transform of $e^{a t}$ which is valid for $s>a$.

x	$\Gamma(x)$
$n+1$ (for integer $n \geq 0$)	$n!$
$1 / 2$	$\sqrt{\pi}$
$3 / 2$	$\frac{1}{2} \sqrt{\pi}$
$5 / 2$	$\frac{3}{4} \sqrt{\pi}$
$7 / 2$	$\frac{15}{8} \sqrt{\pi}$

$$
\begin{gathered}
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t \\
\mathcal{L}\left(f^{\prime}(t)\right)=s \mathcal{L}(f(t))-f(0) \\
\mathcal{L}\left(f^{(n)}(t)\right)=s^{n} \mathcal{L}(f(t))-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0) \\
\mathcal{L}\left(\int_{0}^{t} f(\theta) d \theta\right)=\frac{\mathcal{L}(f(t))}{s} \\
F(s)=\mathcal{L}(f(t)) \Longrightarrow F(s-a)=\mathcal{L}\left(e^{a t} f(t)\right) \\
f(t) * g(t)=\int_{0}^{t} f(\theta) g(t-\theta) d \theta \\
\mathcal{L}(-t f(t))=\frac{d F(s)}{d s} \\
\mathcal{L}\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(\sigma) d \sigma
\end{gathered}
$$

This page intentionally left blank

MATH 3113-002 Test III
 Dr. Darren Ong
 December 4, 2015 11:30am-12:20am

> Answer the questions in the spaces provided on the question sheet. No calculators allowed.

Name: \qquad

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Page 4

1. (10 points) Solve the following Laplace transforms or inverse Laplace transforms. Please show your work, as there is the possibility of partial credit.
(a) $\mathcal{L}\left(e^{-3 t / 2}\right)$
(d) $\mathcal{L}^{-1}\left(\frac{1-s}{s^{2}+36}\right)$
(b) $\mathcal{L}(2)$
(c) $\mathcal{L}(2 \sin (t)-\pi \sqrt{t})$
(e) $\mathcal{L}^{-1}\left(\frac{1}{\sqrt{s^{5}}}\right)$

Solution:

(a) $1 /(\mathrm{s}+3 / 2)$
(b) $2 / \mathrm{s}$
(c) $\frac{2}{s^{2}+1}-\pi \frac{\Gamma(3 / 2)}{s^{3 / 2}}$
(d) $\frac{1}{6} \sin (6 t)-\cos (6 t)$
(e) $\frac{t^{3 / 2}}{\Gamma(3 / 2)}$
2. (20 points) Calculate the Laplace transform

$$
\mathcal{L}(t \sin (t)) .
$$

Solution:

We have

$$
\begin{aligned}
\mathcal{L}(\sin (t)) & =\frac{1}{s^{2}+1} \\
\mathcal{L}(t \sin (t)) & =-\frac{d}{d s} \frac{1}{s^{2}+1} \\
& =\frac{2 s}{\left(s^{2}+1\right)^{2}}
\end{aligned}
$$

Page 6
3. (20 points) Calculate the inverse Laplace transform

$$
\mathcal{L}^{-1}\left(\frac{2 s-1}{s^{2}+6 s+13}\right)
$$

Hint: you might want to complete the square in the denominator.

Solution: Completing the square in the denominator, we rewrite the problem as

$$
\mathcal{L}^{-1}\left(\frac{2 s-1}{(s+3)^{2}+4}\right) .
$$

We can rewrite this as

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{2(s+3)-1-6}{(s+3)^{2}+4}\right) & =\mathcal{L}^{-1}\left(\frac{2(s+3)}{(s+3)^{2}+4}\right)-\mathcal{L}^{-1}\left(\frac{7}{(s+3)^{2}+4}\right) \\
& =2 e^{-3 t} \cos (2 t)-\frac{7}{2} e^{-3 t} \sin (2 t)
\end{aligned}
$$

4. (20 points) Solve the initial value problem

$$
x^{\prime \prime}(t)-9 x(t)=0 ; x(0)=0, x^{\prime}(0)=2 .
$$

using Laplace transforms. You will get no credit for solving this problem using any other method.

Solution: We have

$$
\begin{aligned}
\mathcal{L}(x(t)) & =X(s) \\
\mathcal{L}\left(x^{\prime}(t)\right) & =s X(s)-x(0)=s X(s) \\
\mathcal{L}\left(x^{\prime \prime}(t)\right) & =s^{2} X(s)-s x(0)-x^{\prime}(0)=s^{2} X(s)-2
\end{aligned}
$$

So taking the Laplace transform of the equation gets us

$$
s^{2} X(s)-2-9 X(s)=0,
$$

which is equivalent to

$$
X(s)=\frac{2}{s^{2}-9}
$$

Thus

$$
x(t)=\mathcal{L}^{-1}(X(s))=\mathcal{L}^{-1}\left(\frac{2}{s^{2}-9}\right)=\frac{2}{3} \mathcal{L}^{-1}\left(\frac{3}{s^{2}-9}\right)=\frac{2}{3} \sinh (3 t) .
$$

5. (20 points) Calculate the inverse Laplace transform

$$
\mathcal{L}^{-1}\left(\ln \left(\frac{s}{s+3}\right)\right) .
$$

Hint: $\ln (A / B)=\ln (A)-\ln (B)$, and $\frac{d}{d x} \ln F(x)=F^{\prime}(x) / F(x)$.

Solution:

We first find

$$
\begin{aligned}
& \mathcal{L}^{-1}\left(\frac{d}{d s} \ln \left(\frac{s}{s+3}\right)\right) \\
= & \mathcal{L}^{-1}\left(\frac{d}{d s} \ln (s)\right)-\mathcal{L}^{-1}\left(\frac{d}{d s} \ln (s+3)\right) \\
= & \mathcal{L}^{-1}\left(\frac{1}{s}\right)-\mathcal{L}^{-1}\left(\frac{1}{s-3}\right) \\
= & 1-e^{3 t}
\end{aligned}
$$

We know that

$$
\begin{aligned}
\mathcal{L}\left(\frac{1-e^{3 t}}{t}\right) & =\int_{s}^{\infty} \frac{d}{d \sigma} \ln \left(\frac{\sigma}{\sigma+3}\right) d \sigma \\
& =\left[\ln \left(\frac{\sigma}{\sigma+3}\right)\right]_{\sigma=s}^{\infty} \\
& =\lim _{\sigma \rightarrow \infty} \ln \left(\frac{\sigma}{\sigma+3}\right)-\ln \left(\frac{s}{s+3}\right) \\
& =\ln (1)-\ln \left(\frac{s}{s+3}\right) \\
& =-\ln \left(\frac{s}{s+3}\right)
\end{aligned}
$$

And so

$$
\mathcal{L}^{-1}\left(\ln \left(\frac{s}{s+3}\right)\right)=-\frac{1-e^{3 t}}{t}
$$

6. (10 points) Using the Laplace transform table, prove that

$$
\sinh (2 t)=\frac{e^{2 t}-e^{-2 t}}{2}
$$

Solution: We note that

$$
\mathcal{L}(\sinh (2 t))=\frac{2}{s^{2}-4}=\frac{1 / 2}{s-2}-\frac{1 / 2}{s+2}=\mathcal{L}\left(\frac{e^{2 t}-e^{-2 t}}{2}\right) .
$$

We can now just take inverse Laplace transforms.

