Formula Sheet

$f(t)$	$\mathcal{L}(f(t))$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
$t^{a}(a>-1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}$
$\cos (k t)$	$\frac{s}{s} \frac{k}{s^{2}+k^{2}}$
$\sinh (k t)$	$\frac{k}{s^{2}-k^{2}}$
$\cosh (k t)$	$\frac{s}{s^{2}-k^{2}}$

The above Laplace transforms are valid for $s>0$, with the exception of the Laplace transforms of $\sinh (k t)$ and $\cosh (k t)$ which are valid for $s>|k|$ and the Laplace transform of $e^{a t}$ which is valid for $s>a$.

x	$\Gamma(x)$
$n+1$ (for integer $n \geq 0$)	$n!$
$1 / 2$	$\sqrt{\pi}$
$3 / 2$	$\frac{1}{2} \sqrt{\pi}$
$5 / 2$	$\frac{3}{4} \sqrt{\pi}$
$7 / 2$	$\frac{15}{8} \sqrt{\pi}$

$$
\begin{gathered}
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t \\
\mathcal{L}\left(f^{\prime}(t)\right)=s \mathcal{L}(f(t))-f(0) \\
\mathcal{L}\left(f^{(n)}(t)\right)=s^{n} \mathcal{L}(f(t))-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0) \\
\mathcal{L}\left(\int_{0}^{t} f(\theta) d \theta\right)=\frac{\mathcal{L}(f(t))}{s} \\
F(s)=\mathcal{L}(f(t)) \Longrightarrow F(s-a)=\mathcal{L}\left(e^{a t} f(t)\right) \\
f(t) * g(t)=\int_{0}^{t} f(\theta) g(t-\theta) d \theta \\
\mathcal{L}(-t f(t))=\frac{d F(s)}{d s} \\
\mathcal{L}\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(\sigma) d \sigma
\end{gathered}
$$

This page intentionally left blank

MATH 3113-001 Test III
 Dr. Darren Ong
 December 4, 2015 1:30pm-2:20pm

> Answer the questions in the spaces provided on the question sheet. No calculators allowed.

Name: \qquad

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Page 4

1. (10 points) Calculate the following Laplace transforms or inverse Laplace transforms. Please show your work, as there is the possibility of partial credit.
(a) $\mathcal{L}\left(e^{-3 t / 2}\right)$
(d) $\mathcal{L}^{-1}\left(\frac{1-s}{s^{2}+36}\right)$
(b) $\mathcal{L}(2)$
(c) $\mathcal{L}(2 \sin (t)-\pi \sqrt{t})$
(e) $\mathcal{L}(\sin (2 t) * \cos (3 t))$ (Hint: DON'T calculate the convolution product)

Solution:

(a) $1 /(\mathrm{s}+3 / 2)$
(b) $2 / \mathrm{s}$
(c) $\frac{2}{s^{2}+1}-\pi \frac{\Gamma(3 / 2)}{s^{3 / 2}}$
(d) $\frac{1}{6} \sin (6 t)-\cos (6 t)$
(e) $\frac{1}{s^{2}+4} \frac{s}{s^{2}+9}$
2. (20 points) Calculate the inverse Laplace transform

$$
\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}+5 s+6}\right)
$$

Solution: We factor the denominator and then we have the partial fraction decomposition

$$
\frac{s+1}{(s+2)(s+3)}=\frac{2}{s+3}-\frac{1}{s+2} .
$$

Thus

$$
\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}+5 s+6}\right)=2 \mathcal{L}^{-1}\left(\frac{1}{s+3}\right)-\mathcal{L}^{-1}\left(\frac{1}{s+2}\right)=2 e^{-3 t}-e^{-2 t} .
$$

3. (20 points) Calculate the inverse Laplace transform

$$
\mathcal{L}^{-1}\left(\frac{1}{(s-2)^{3 / 2}}\right)
$$

Solution: We have, from the formula sheet

$$
\mathcal{L}^{-1}\left(\frac{\Gamma(3 / 2)}{s^{3 / 2}}\right)=t^{1 / 2}
$$

and so

$$
\mathcal{L}^{-1}\left(\frac{1}{s^{3 / 2}}\right)=\frac{t^{1 / 2}}{\Gamma(3 / 2)},
$$

and finally

$$
\mathcal{L}^{-1}\left(\frac{1}{(s-2)^{3 / 2}}\right)=\frac{t^{1 / 2} e^{2 t}}{\Gamma(3 / 2)}
$$

4. (20 points) Where x and y are functions of t, consider the system of equations

$$
\begin{aligned}
& 2 x^{\prime \prime}(t)+3 y^{\prime}(t)+x(t)=e^{t} \\
& y^{\prime \prime}(t)+2 x^{\prime}(t)-3 y(t)=0
\end{aligned}
$$

It is known that $x(t)$ satisfies an equation of the form
$A x^{(4)}(t)+B x^{(3)}(t)+C x^{\prime \prime}(t)+D x^{\prime}(t)+E x(t)=F e^{t}$,
where A, B, C, D, E, F are constants that are not all zero. Determine what A, B, C, D, E, F should be.

Solution: We rewrite the system as

$$
\begin{aligned}
\left(2 D^{2}+1\right) x(t)+3 D y(t) & =e^{t} \\
2 D x(t)+\left(D^{2}-3\right) y(t) & =0
\end{aligned}
$$

Let (I) be the first equation and (II) the second equation. Then $\left(D^{2}-3\right)(\mathrm{I})-3 D$ (II) gives us

$$
\left[\left(D^{2}-3\right)\left(2 D^{2}+1\right)-3 D(2 D)\right] x(t)=\left(D^{2}-3\right) e^{t}
$$

This is equivalent to

$$
\left[2 D^{4}-5 D^{2}-3\right] x(t)=D^{2} e^{t}-3 e^{t}
$$

and so

$$
2 x^{(4)}(t)-5 x^{\prime \prime}(t)-3 x(t)=-2 e^{t} .
$$

So $A=-1, C=-5, E=-3, F=-2$, and $B=D=0$.
5. (20 points) For the initial value problem

$$
t x^{\prime \prime}(t)+t x^{\prime}(t)+2 x^{\prime}(t)+2 x(t)=0, x(0)=0 .
$$

Calculate $\frac{d}{d s} \ln (X(s))$, where $X(s)=\mathcal{L}(x(t))$.

Solution: We have

$$
\begin{aligned}
\mathcal{L}(x(t)) & =X(s) \\
\mathcal{L}\left(x^{\prime}(t)\right) & =s X(s)-x(0)=s X(s) \\
\mathcal{L}\left(x^{\prime \prime}(t)\right) & =s^{2} X(s)-s x(0)-x^{\prime}(0)=s^{2} X(s)-x^{\prime}(0) \\
\mathcal{L}(t x(t)) & =-\frac{d}{d s} X(s) \\
\mathcal{L}\left(t x^{\prime}(t)\right) & =-\frac{d}{d s}(s X(s)-x(0))=-\frac{d}{d s}(s X(s))=-X(s)-s X^{\prime}(s) \\
\mathcal{L}\left(t x^{\prime \prime}(t)\right) & =-\frac{d}{d s}\left(s^{2} X(s)-s x(0)-x^{\prime}(0)\right)=-\frac{d}{d s}\left(s^{2} X(s)-x^{\prime}(0)\right)=-2 s X(s)-s^{2} X^{\prime}(s) .
\end{aligned}
$$

So taking the Laplace transform of the entire differential equation we get

$$
-2 s X(s)-s^{2} X^{\prime}(s)-X(s)-s X^{\prime}(s)+2 s X(s)+2 X(s)=0 .
$$

We can rewrite this as

$$
X^{\prime}(s) / X(s)=\frac{-1}{-s^{2}-s} .
$$

But since $\frac{d}{d s} \ln (X(s))=X^{\prime}(s) / X(s)$, we have

$$
\frac{d}{d s} \ln (X(s))=\frac{-1}{-s^{2}-s}
$$

6. (10 points)
(a) Let k be any constant. Show that $e^{t^{2}}>e^{k t}$ for any t that is sufficiently large.
(b) By (a), we can say that $f(t)=e^{t^{2}}$ is not of exponential order. According to what we have learned in this class, this implies that $\mathcal{L}(f(t))$ does not exist. What goes wrong when you try to calculate the Laplace transform of $\mathcal{L}(f(t))$, using the definition of Laplace transform? (Hint: use the fact that $\frac{f(t)}{e^{s t}}>1$ for sufficiently large t.)

Solution: For part (a), we take the \ln of both sides, so the inequality changes to $t^{2}>k t$, which is obviously true for large enough t. This works because \ln is an increasing function.
For part (b), we consider the integral

$$
\mathcal{L}(f(t))=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

For large $t, f(t) e^{-s t}=\frac{f(t)}{e^{s t}}>1$. Thus the area under the curve $f(t) e^{-s t}$ contains a rectangle with height 1 and infinite length. The integral is thus infinity.

