
MATH 3113-009 Test II

Dr. Darren Ong

March 25, 2015 10:30am-11:20am

Answer the questions in the spaces provided on the question sheets. If you
run out of room for an answer, continue on the back of the page. No

calculators allowed.
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1. (20 points) Let p(x), q(x), r(x), f(x) be continuous functions.

The following differential equation,

y′′′ + p(x)y′′ + q(x)y′ + r(x)y = 0

has solutions y1 = sin(x), y2 = e−2x, y3 = cos(x). These three functions are linearly
independent (you DON’T have to prove this).

We also know that

sinh(x)′′′ + p(x) sinh(x)′′ + q(x) sinh(x)′ + r(x) sinh(x) = f(x).

Write down the general solution for

y′′′ + p(x)y′′ + q(x)y′ + r(x)y = f(x).

Solution: By the principle of superposition, the complementary solution is

yc = C1 sin(x) + C2e
−2x + C3 cos(x).

We are given that the particular solution is yp = sinh(x).

Since the general solution is y = yc + yp, we have

y = C1 sin(x) + C2e
−2x + C3 cos(x) + sinh(x).
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2. (20 points) Calculate the general solution for the differential equation

y′′ + 4y′ + 6y = 0.

Solution: We substitute y = erx to obtain

r2 + 4r + 6 = 0.

By the quadratic formula, we find roots r = −2± i
√

2. This corresponds to linearly
independent solutions

y1 = e−2x cos(
√

2x), y2 = e−2x sin(
√

2x).

Our general solution is thus

y = C1e
−2x cos(

√
2x) + C2e

−2x sin(
√

2x).

Page 4



3. (15 points) Calculate the particular solution of

y′′ + 3y′ + 2y = 4ex,

using the variation of parameters formula,

yp(x) = −y1(x)

∫
y2(x)f(x)

W (x)
dx+ y2(x)

∫
y1(x)f(x)

W (x)
dx,

where W (x) is the Wronskian of y1 and y2, and y1, y2 are two linearly independent
solutions of the homogeneous equation.

For partial credit, you may use the principle of undetermined coefficients to solve this
problem instead.

Solution: First, we solve the homogeneous equation

y′′ + 3y′ + 2y = 0.

We substitute y = erx and we get r2 + 3r + 2 = 0, which has roots r = −1, r = −2.
Thus we have y1 = e−x, y2 = e−2x.

The Wronskian of y1, y2 is

W (x) = e−x(2e−2x)− e−2xe−x = e−3x.

The nonhomogeneous part is f(x) = 4ex. We can then calculate

∫
y2(x)f(x)

W (x)
dx =

∫
e−2x(4ex)

e−3x
dx

=2e2x.∫
y1(x)f(x)

W (x)
dx =

∫
e−x(4ex)

e−3x
dx

=
4

3
e3x.

Plugging in all our calculations in the formula, we have

yp =
2

3
ex.
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ii)

iii)
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4. (18 points) You are given the following values for mass m, damping constant c, and
spring constant k, corresponding to a mass-spring system with no external force. Indicate
whether each system is undamped, underdamped, or overdamped. Also, indicate which
of the three graph plots on the previous page most closely matches the graph of x(t),
the position of the weight at time t (Ignore the numbers on the graph axes).

a) m = 3, c = 0, k = 2

b) m = 2, c = 3, k = 1

c) m = 2, c = 3, k = 2

Solution:

a) m = 3, c = 0, k = 2 Undamped, graph (ii).

b) m = 2, c = 3, k = 1 Overdamped, graph (i).

c) m = 2, c = 3, k = 2 Underdamped, graph (iii).
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5. (17 points) Consider the boundary value problem given by

y′′ + λy = 0, y′(0) = 0, y′(π) = 0.

(a) Is λ = 0 an eigenvalue? If it is, write down a corresponding eigenfunction.

(b) Identify all the positive eigenvalues. You do not need to find the corresponding
eigenfunctions.

Solution: We consider the case λ = 0. Our equation becomes y′′ = 0, which means
we have the general solution y(x) = Ax+B for constants A,B. We have y′(x) = A,
so we have A = 0, and no restrictions on B. We thus have solutions y = B for
arbitrary constants B. λ = 0 is thus an eigenvalue with eigenfunction y = 1.

We consider now the case λ > 0. We write λ = α2 for notational reasons. We
then have

y′′ + α2y = 0.

Making the substitution y = erx we get

r2 + α2 = 0,

which has roots r = ±iα. Our general solution is thus

y(x) = C1 cos(αx) + C2 sin(αx).

Taking the derivative, we have

y′(x) = −C1α sin(αx) + C2α cos(αx).

Plugging in the boundary condition y′(0) = 0 we have

0 = C2α,

and so C2 = 0. Plugging in the boundary condtion y′(π) = 0 and using C2 = 0 we
have

0 = C1α sin(απ).

Note that α > 0. So C1 can be nonzero only when sin(απ) = 0, which happens when
α = 1, 2, 3, 4, . . . . Since λ = α2, our eigenvalues are

λ = 1, 4, 9, 16, . . . .
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6. (10 points) Let q(x), p(x) be continuous functions on the real line. It is known that the
general solution of a second order linear homogeneous differential equation,

y′′(x) + q(x)y′(x) + p(x)y(x) = 0 (1)

has a general solution that contains two arbitrary constants. Consider the following
statement:

If y1(x), y2(x) are linearly independent solutions to equation (1), then the general
solution of (1) can be given as

y(x) = C1y1(x) + C2y2(x),

where C1, C2 are the two arbitrary constants.

Explain why the linearly independent condition is necessary.

Solution: If y1(x), y2(x) are linearly dependent, we have y1(x)/y2(x) = K for some
constant K. We can then rewrite

y(x) = C1Ky2(x) + C2y2(x) = (C1K + C2)y2(x) = C3y2(x),

where C3 = C1K +C2. But we have rewritten the general solution of a second order
equation so that it has only one arbitrary constant, which is impossible.
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