
MATH 4163-002 Test II

Dr. Darren Ong

March 10, 2016 1:30pm-2:45pm

Answer the questions in the spaces provided on the question sheets. No
calculators allowed.
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1. (10 points) We say that an operator L is self-adjoint if for any two functions u, v and a
multiplication ∗ on functions, L(u) ∗ v = u ∗ L(v). Write down two different examples
of self-adjoint operators, if we let * be standard multiplication.

Solution: L(f) = 0 and L(f) = f are the simplest examples.
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2. (15 points) Recall that a Fourier series on [−L,L] can be written down in two forms:
either as

f̂(x) = A0 +
∞∑
n=1

An cos
nπx

L
+Bn sin

nπx

L
,

or as

f̂(x) =
∞∑

m=−∞

Cme
−imπx/L.

Express Cm in terms of the An and Bn (recall that the m in Cm can be positive or
negative, but the n in An, Bn cannot be negative.) You may use the trigonometric
identities 2 cos(θ) = eiθ + e−iθ, and 2i sin(θ) = eiθ − e−iθ.

Solution: We plug in the hint to the first version of the Fourier series.

f̂(x) = A0 +
∞∑
n=1

An
1

2

(
exp

nπx

L
+ exp

−nπx
L

)
+Bn

1

2i

(
exp

nπx

L
− exp

−nπx
L

)
,

Collecting like terms, we can rewrite this as

f̂(x) = A0 +
∞∑
n=1

An +Bn/i

2
exp

nπx

L
+
An −Bn/i

2
exp
−nπx
L

.

So clearly, if m is positive,

Cm =
An −Bn/i

2
, C−m =

An +Bn/i

2
,

and
C0 = A0.
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3. (15 points) Consider a vibrating string lying between x and x + ∆x, and let u(x, t) be
the height of the string at time t and location x. The vertical acceleration of the string

applies a force of ρ∆x
∂2

∂t2
u(x, t). The tension of the string applies a vertical force of

T sin(θ(x+ ∆x, t))− T sin(θ(x, t)), where T is the (constant) tension of the string, and
θ(x, t) is the angle of the string’s slope at position x and time t. Also, you may assume
that θ(x, t) is always small enough that sin(θ(x, t)) is always roughly equal to tan(θ(x, t).

Derive the vibrating string equation from this information (you may want to start by
equating all the vertical forces acting on the string)

Solution: We have

ρ∆x
∂2

∂t2
u(x, t) = T sin(θ(x+ ∆x, t))− T sin(θ(x, t)).

Let us divide by ∆x to obtain

ρ
∂2

∂t2
u(x, t) =

T sin(θ(x+ ∆x, t))− T sin(θ(x, t))

∆x
.

Taking the limit as ∆x→ 0 we have

ρ
∂2

∂t2
u(x, t) =

d

dx
T sin(θ(x, t)).

However, notice that the slope of u(x, t) can be expressed in two ways: as
∂

∂x
u(x, t),

and as rise over run. Rise over run is equivalent to opposite over adjacent, which is
equivalent to tan(θ(x, t), and we can assume that tan(θ(x, t) ∼ sin(θ(x, t)). Thus we
may assume

∂

∂x
u(x, t) = sin(θ(x, t)).

Plugging this in to our previous equation, we get

ρ
∂2

∂t2
u(x, t) = T

∂2

∂x2
u(x, t),

which is the vibrating string equation.

Page 5



4. (15 points) Product solutions to the vibrating string equation take the form

un(x, t) = sin
nπx

L

(
An cos

nπct

L
+Bn sin

nπct

L

)
, n = 1, 2, 3, . . .

Explan what happens to the pitch of the sound produced by the string’s vibration if we

(a) increase the length of the string

(b) increase the density of the string

(c) increase the tension of the string

Justify your answers using the above formula for the product solution. Justifications of
the form “I know this is true because I play guitar” will earn very little partial credit.

Solution: The frequency of the trig functions sin(ωt), cos(ωt) is ω
2π

hertz. Thus if we
increase L, the ω decreases, and the frequency of the vibration decreases, resulting
in a lower pitch.

c =
√

T
ρ
, and so increasing tension increaes c and therefore ω, leading to a higher

pitch. Conversely, increaseing the density lowers the T and therefore ω, thus de-
creasing the pitch.
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5. (15 points) Consider the Sturm-Liouville operator,

L(F (x)) =
d

dx

(
p(x)

dF (x)

dx

)
+ q(x)F (x).

You may recall the Green’s formula,

∫ b

a

(uL(v)− vL(u))dx = p

(
u
dv

dx
− vdu

dx

)∣∣∣∣b
x=a

.

Show that if we impose boundary conditions 3f(a)− f ′(a) = 0, f ′(b) = 0 on both f = u
and f = v, the operator L is self-adjoint.

Solution: Self-adjointness is equivalent to showing

p

(
u
dv

dx
− vdu

dx

)∣∣∣∣b
x=a

= 0.

We expand out the LHS to get

p(b)

(
u(b)

dv(b)

dx
− v(b)

du(b)

dx

)
− p(a)

(
u(a)

dv(a)

dx
− v(a)

du(a)

dx

)
.

Since u′(b) = v′(b) = 0, the entire first term is zero. This leaves us with

p(a)

(
u(a)

dv(a)

dx
− v(a)

du(a)

dx

)
.

But note that since 3u(a) − u′(a) and 3v(a) − v′(b) are both zero, we must have
u′(a) = 3u(a) and v′(a) = 3v(a). This implies

p

(
u
dv

dx
− vdu

dx

)∣∣∣∣b
x=a

= p(a) (u(a)3v(a)− v(a)3u(a)) = 0.
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6. (15 points) Let λm, λn be two eigenvalues for a self-adjoint Sturm-Liouville equation

L(F (x)) + λσ(x)F (x) = 0,

and let Fm(x), Fn(x) respectively be their two eigenfunctions.

Show that if λm 6= λn, then ∫ b

a

Fm(x)Fn(x)σ(x)dx = 0.

Hint: what does the fact that L is self-adjoint imply?

Solution:

Using self-adjointness, we know that

∫ b

a

L(Fm)Fn − L(Fn)Fmdx = 0.

But we also know from the Sturm-Liouville equation that

L(Fm(x)) = −λmσ(x)Fm(x),

and
L(Fn(x)) = −λnσ(x)Fn(x).

Plugging these into the self-adjointness equation we get

∫ b

a

−λmσ(x)Fm(x)Fn(x) + λnσ(x)Fn(x)Fm(x)dx = 0

Factoring, this becomes

(λn − λm)

∫ b

a

Fm(x)Fn(x)σ(x)dx = 0,

but since λn − λm 6= 0, it must be true that

∫ b

a

Fm(x)Fn(x)σ(x)dx = 0.
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7. (15 points) It is known that if our Sturm-Liouville operator L is self-adjoint and if we
impose Dirichlet, Neumann, or Robin boundary conditions, then where F1(x), F2(x) are
two eigenfunctions corresponding to the same eigenvalue λ,

F1(x)F ′2(x)− F2(x)F ′1(x) = 0.

Using this, show that F2(x) must be a constant multiple of F1(x).

Solution: By the quotient rule,

d

dx

(
F2(x)

F1(x)

)
=
F1(x)F ′2(x)− F2(x)F ′1(x)

F1(x)2
= 0

This implies that for some constant C,

F2(x)

F1(x)
= C,

or F2(x) = CF1(x).
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