MATH 3113-002 Test I

Dr. Darren Ong
September 16, 2015 11:30am-12:20am

Answer the questions in the spaces provided on the question sheets. No calculators allowed.

Name: \qquad

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Page 2

1. (20 points) (a) Calculate the slopes for solutions of the differential equation $y^{\prime}=x-2 y$.

You should use the table below

$y \backslash x$	-3	-2	-1	0	1	2	3
3							
2							
1							
0							
-1							
-2							
-3							

(b) Sketch the slope field and sketch the solution of the differential equation $y^{\prime}=x-2 y$ with initial condition $y(2)=-2$.

Solution:

$y \backslash x$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{3}$	-9	-8	-7	-6	-5	-4	-3
$\mathbf{2}$	-7	-6	-5	-4	-3	-2	-1
$\mathbf{1}$	-5	-4	-3	-2	-1	0	1
$\mathbf{0}$	-3	-2	-1	0	1	2	3
$\mathbf{- 1}$	-1	0	1	2	3	4	5
$\mathbf{- 2}$	1	2	3	4	5	6	7
$\mathbf{- 3}$	3	4	5	6	7	8	9

As for part (b), embedding images in pdf files is a pain, so just use the DFIELD java applet and look at it yourself!
2. (20 points) Consider the differential equation $y^{\prime}=\sin (x)+1$
(a) Calculate the general solution of this differential equation.
(b) Assume that in addition, the solution of the differential equation satisfies $y(0)=3$. Calculate $y(x)$.

Solution:

(a) We integrate both sides to obtain

$$
y=\int \sin (x)+1 d x=-\cos (x)+x+C
$$

(b) We plug in $x=0, y=3$ in the above equation and find

$$
3=-\cos (0)+0+C
$$

and therefore $C=4$. Thus our particular solution must be $y(x)=-\cos (x)+$ $x+4$.
3. (20 points) The half-life of unobtainium is $\ln (2)$ years (roughly 0.69 years). An accident in an unobtainium reactor on Pandora causes the levels of unobtainium radiation on the planet to be e^{3} times (roughly 20.09 times) the acceptable level for human habitation. How long before radiation levels on Pandora become tolerable for humans? Note: I have carefully chosen values so a calculator is unecessary to solve this problem.

Solution: Let $x(t)$ be the radiation levels on Pandora t years after the accident. Let the unit of $x(t)$ be the level acceptable for human habitation, so our goal is to find T so $x(T)=1$.
We know $x(t)$ is modeled by the growth-decay equation, so

$$
x(t)=C e^{k t}
$$

for constants C and k.
We know the radiation levels is e^{3} at the time of the accident, so $x(0)=e^{3}$. This implies $e^{3}=C e^{k 0}=C$, and so

$$
x(t)=e^{3} e^{k t}
$$

Since the half life of unobtainium is $\ln (2)$ years, $x(\ln (2))$ must equal $e^{3} / 2$. This implies

$$
\frac{e^{3}}{2}=x(\ln (2))=e^{3} e^{k \ln (2)}=e^{3} 2^{k}
$$

In other words, $\frac{1}{2}=2^{k}$, so $k=-1$. We then know that

$$
x(t)=e^{3} e^{-t}=e^{3-t}
$$

Clearly, $x(T)=1$ only when $T=3$. So it takes 3 years before the radiation levels are acceptable for human habitation.
4. (20 points) Calculate the particular solution for the following initial value problem.

$$
y^{\prime}+\frac{y}{x}=x, y(1)=2
$$

Solution: The integrating factor is

$$
e^{\int \frac{1}{x} d x}=e^{\ln x}=x .
$$

(We may assume x is positive due to the initial condition, so we don't need to write $\ln |x|$.)
Multiplying the equation by the integrating factor we get

$$
\frac{d y}{d x} x+y=x^{2} .
$$

This simplifies to

$$
\frac{d}{d x}(y x)=x^{2} .
$$

Integrating both sides we get

$$
y x=\frac{x^{3}}{3}+C,
$$

and we conclude that the general solution is $y=x^{2} / 3+C / x$.
Plugging in the initial condition $x=1, y=2$ we find that

$$
2=\frac{(1)^{2}}{3}+\frac{C}{1}
$$

So solving for C, we find that $C=4 / 3$. Thus the solution to the initial value problem is

$$
y=\frac{x^{2}}{3}+\frac{4}{3} .
$$

5. (10 points) Consider the following homogeneous equation in variables y, x :

$$
y^{\prime} y x+x^{2}=y^{2}
$$

Given the substitution $u=y / x$, rewrite the above equation as a simpler differential equation in variables u, x. Please don't attempt to solve this equation.

Solution: We start by dividing both sides by the highest power of x, that is x^{2}. We get

$$
\frac{d y}{d x} \frac{y}{x}+1=\left(\frac{y}{x}\right)^{2}
$$

Since we are using the substitution $u=y / x$, we also have $y=u x$. Differentiating both sides of this equation, we have

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

This enables us to rewrite our differential equation as

$$
\left(\frac{d u}{d x} x+u\right) u+1=u^{2} .
$$

6. (10 points) Nissa wants to find the general solution of the differential equation

$$
\frac{d y}{d x}=\frac{y}{x-1} .
$$

She recognizes that this is a separable equation, and so she decides to rearrange terms as follows:

$$
\int \frac{1}{y} d y=\int \frac{1}{x-1} d x
$$

Integrating both sides, she finds that

$$
\ln |y|=\ln |x-1|+C,
$$

for some arbitrary constant C.
Nissa then exponentiates both sides of the equation.

$$
|y|=|x-1| e^{C} .
$$

Dropping the absolute values, she then gets

$$
y= \pm(x-1) e^{C} .
$$

She redefines the constant as $K= \pm e^{C}$ to get this expression for the general solution:

$$
y=K(x-1) .
$$

However, when Nissa tries to plug in the initial condition $y(1)=3$, it is impossible for her to find an appropriate value for the constant K. What (if anything) has gone wrong with her calculation?

Solution: The differential equation fails the existence test, since $\frac{y}{x-1}$ is not continuous around the point $(1,3)$. Thus we cannot guarantee a solution with initial condition $x=1, y=3$.

