Day 8: Homework

Question	:

Consider the game we considered in class, with V < C.

	FIGHT	SHARE
FIGHT	$\left(\frac{V-C}{2}, \frac{V-C}{2}\right)$	(V,0)
SHARE	(0,V)	$\left(\frac{V}{2}, \frac{V}{2}\right)$

We calculated that $\frac{V}{C}FIGHT + (1 - \frac{V}{C})SHARE$ for both players was the mixed Nash equilibrium strategy. Assume that we have a population of animals that all use this Nash strategy. Introduce a small number of mutant animals that always choose to FIGHT instead.

- (a) Calculate the payoff of a normal animal against a mutant.
- (b) Calculate the payoff of a mutant against another mutant.
- (c) Use Theorem 3 in the worksheet. Is the Nash strategy also an Evolutionary Stable Strategy? (remember that V C is negative!)