Day 4: Homework

Homework 1: Go to http://oyc.yale.edu/sites/default/files/problemset2_1.pdf and do exercises 3 and 4. The homework set mentions "pure strategy" a few times, just ignore the phrase because we haven't covered that yet.
Homework 2: Redo activity 5 in the class worksheet, except with the numbers slightly changed. I have marked the changed numbers in bold:

You and a friend are working on a group project. The payoff you collectively get from the project is

$$
4 A+4 B+A B
$$

where A is the hours of effort you put in and B is the amount of hours your friend puts in. However, we are going to subtract A^{2} from the payoff to represent how the effort of working hard makes you unhappy. So your individual payoff from the project is going to be half the collective payoff, minus A^{2}, in other words, for you and your opponent respectively the payoffs are

$$
\frac{4 A+4 B+A B}{2}-A^{2} \text { and } \frac{4 A+4 B+A B}{2}-B^{2}
$$

You are each able to put in between 0 and 4 hours of work into the project.
(a) If you know that your friend is going to put in B hours of work, what is the value of A that will maximize your payoff? Remember that a function $Q(A)$ that depends on A has maxima and minima at the points where the derivative $Q^{\prime}(A)=0$. (How can you tell it is a maximum and not a minimum?)
(b) If your friend knows you are going to put in A hours of work, what is the value of B that will maximize your friend's payoff?
(c) Draw a graph, where the x-axis is B, and the y-axis is A. Draw a curve that tells you what your best response A is to your opponent's choice of B.
(d) Draw another curve on that same graph that represents your opponent's best response B to your choices of A.
(e) Using the best response principle, eliminate all your choices A that are not a best response to one of your opponent's choices of B and write down what choices for A you have left. You should get a range (m, n) of choices, where $m>0$ and $n<4$. Do the same for your friend- eliminate all choices of B that are not the best response to an A between 0 and 4 .
(f) Re-draw the graph using that smaller set of choices for A and B. What are the best responses for both players?
(g) What happens when you keep repeating this process?

