Homework # 9: 5463: Real Analysis 2

1. Do the following maps on test functions define distributions?

$$\langle F, \varphi \rangle = \sum_{n=0}^{\infty} \frac{\varphi^{(n)}(0)}{n!} 2^{-n},$$

$$\langle G, \varphi \rangle = \sum_{n=0}^{\infty} 2^n \varphi^{(n)}(n),$$

$$\langle H, \varphi \rangle = \sum_{n=0}^{\infty} (\varphi(n))^n.$$

- 2. Show that $n^k e^{inx} \to 0$ as $n \to \infty$ in $\mathcal{D}'(\mathbb{R})$, for any (integer) $k \ge 0$. Suggestion: Show the general result that if $F_n \to F$ in \mathcal{D}' , then also $F'_n \to F'$.
- 3. (alternative definition of the distributional derivative) (a) Show that if $\varphi \in C_c^{\infty}(\mathbb{R})$ is a test function, then

$$\frac{\varphi(x+h) - \varphi(x)}{h} \to \varphi'(x) \qquad (h \to 0),$$

uniformly on $x \in \mathbb{R}$. (The point is the uniform convergence, otherwise this would just be the definition of φ' .)

(b) Use part (a) to show that for any $F \in \mathcal{D}'(\mathbb{R})$,

$$\frac{1}{h}\left(\tau_{-h}F - F\right) \to F'$$

in \mathcal{D}' (in particular, the limit on the left-hand side always exists).

4. Let (X, \mathcal{T}) be a topological space, and let $Y \in \mathcal{B}_X$ be a Borel subset. Then Y is a topological space itself, with the induced topology (so what are the open sets?), and thus has a Borel σ -algebra \mathcal{B}_Y . Show that $\mathcal{B}_Y = \{Y \cap B : B \in \mathcal{B}_X\}$.

"due" 5/1