Homework \# 7: 5463: Real Analysis 2

1. Compute the Fourier transforms of

$$
f(x)=\chi_{(-1,1)}(x), \quad g(x)=\chi_{(-1,1)}(x)(1-|x|) .
$$

2. Suppose that $f \in L^{1}(\mathbb{R})$ is bounded and continuous, and

$$
|\widehat{f}(\xi)| \leq \frac{C}{1+|\xi|^{1+\alpha}},
$$

for some $0<\alpha<1$. Show that then f is Hölder continuous of order α, that is, there exists a constant M so that

$$
|f(x+h)-f(x)| \leq M|h|^{\alpha}
$$

for all $x, h \in \mathbb{R}$.
Hint: Use the Fourier inversion formula to write down the difference $f(x+$ $h)-f(x)$. Then treat separately the contributions coming from $|\xi| \leq 1 /|h|$ and $|\xi|>1 /|h|$.
Remark: These two problems illustrate a general principle: Smoothness properties of the function correspond to decay properties of the Fourier transform.
3. Exercises 8, 9 from Section 8.2.

Hint: In Exercise 8, please make sure you know exactly what you want to show. Then the actual verification is not that complicated (an application of Hölder's inequality).
"due" $4 / 3$

