Homework \# 6: 5463: Real Analysis 2

1. Let $\left\{r_{n}\right\}$ be an enumeration of $\mathbb{Q} \cap(0,1)$, let $g(x)=\chi_{(0,1)}(x) x^{-1 / 2}$, and define

$$
f(x)=\sum_{n=1}^{\infty} 2^{-n} g\left(x-r_{n}\right)
$$

(compare Exercise 25 from Section 2.3).
(a) Prove the following facts about f again: The series defining f converges for a.e. $x \in(0,1)$, and f is measurable (in fact, $f \in L^{1}(0,1)$).
Also, recall (but don't prove) that f is unbounded on every open set; in particular, f is discontinuous at every point.
(b) Therefore, Lusin's Theorem can be applied, and we in particular obtain the following: For every $\epsilon>0$, there exists a set $E \subset(0,1)$ with $m\left(E^{c}\right)<\epsilon$ so that the restriction of f to E is continuous. Construct such a set explicitly.
2. Exercises 1, 2, 3 from Section 8.1.
"Due" 3/13

