Homework \# 4: 5463: Real Analysis 2

1. Let (Ω, \mathcal{M}, P) be a probability space (= measure space with $P(\Omega)=1$), let $X \in L^{1}(\Omega)$ be a (real valued) random variable, and let $\mathcal{A} \subset \mathcal{M}$ be a σ subalgebra of \mathcal{M}.
(a) Prove that there exists an $\left(\mathcal{A}, \mathcal{B}_{\mathbb{R}}\right)$-measurable function $f: \Omega \rightarrow \mathbb{R}$ so that

$$
\begin{equation*}
\int_{A} f(\omega) d P(\omega)=\int_{A} X(\omega) d P(\omega) \quad \text { for all } A \in \mathcal{A} \tag{1}
\end{equation*}
$$

Moreover, if g is another such function, then $f=g$ almost surely ($=P$-almost everywhere).
This function is usually denoted by $E(X \mid \mathcal{A})$ and called the conditional expectation of X, given \mathcal{A}.
Hint: The right-hand side of (1) defines a (signed) measure on (Ω, \mathcal{A}). Use the Radon-Nikodym Theorem.
(b) If $Y: \Omega \rightarrow \mathbb{R}$ is another random variable, then

$$
\mathcal{A}_{Y}=\left\{Y^{-1}(B): B \in \mathcal{B}_{\mathbb{R}}\right\}
$$

defines a σ-algebra on Ω, and $\mathcal{A}_{Y} \subset \mathcal{M}$. We can therefore define the conditional expectation of X, given Y by

$$
E(X \mid Y)=E\left(X \mid \mathcal{A}_{Y}\right)
$$

(c) Prove that if $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{A}_{Y}-measurable, then f is constant on every set of the form $Y^{-1}(\{c\})$. Then show that this implies that f can be written as a function of $Y: f=\varphi \circ Y$ for some $\varphi: \mathbb{R} \rightarrow \mathbb{R}$. (With more effort, one can show that φ can be chosen as a Borel function.)
So $E(X \mid Y)$ can be thought of as that function of Y that produces the correct partial averages of X.
(d) Find \mathcal{A}_{Y} and $E(X \mid Y)$ in the following example: $\Omega=\{(00),(01),(10),(11)\}$, $\mathcal{M}=\mathcal{P}(\Omega), P(\{\omega\})=1 / 4$ for all $\omega \in \Omega, X((a b))=a, Y((a b))=a+b$
(e) Random variables X, Y are called independent if

$$
P\left(X \in B, Y \in B^{\prime}\right)=P(X \in B) P\left(Y \in B^{\prime}\right) \quad \text { for all } B, B^{\prime} \in \mathcal{B}_{\mathbb{R}}
$$

Show that X, Y are independent if and only if the joint distribution $P_{X, Y}$ is the product (in the sense of Section 2.5) $P_{X} \otimes P_{Y}$. Here, $P_{X, Y}\left(B_{2}\right)=P\left((X, Y) \in B_{2}\right) \quad\left(B_{2} \in \mathcal{B}_{\mathbb{R}^{2}}\right), \quad P_{X}(B)=P(X \in B) \quad\left(B \in \mathcal{B}_{\mathbb{R}}\right)$. (See also pg. 316.) Then use Fubini-Tonelli to show that if $X, Y \in L^{1}(\Omega)$ are independent, then

$$
E(X Y)=E(X) E(Y) \quad\left(E(Z):=\int_{\Omega} Z(\omega) d P(\omega)\right) .
$$

(f) What is $E(X \mid Y)$ if X, Y are independent? What is $E(X \mid X)$?
2. Exercise 43 from Section 6.5

