
4. Sufficiency

4.1. Sufficient statistics.

Definition 4.1. A statistic T = T (X1, . . . , Xn) is called sufficient if
the conditional probabilities

(4.1) Pθ(X1 = x1, . . . , Xn = xn|T = t)

are independent of θ for all x1, . . . , xn and t.

This assumes that the distributions are discrete. I’ll give the con-
tinuous version of this definition in a moment, but let us first try to
understand it intuitively. Let’s take one more look at the coin flip
example, so P (X1 = 1) = θ, P (X1 = 0) = 1 − θ, and let’s take
T = nX = X1 + . . .+Xn.

I claim that T is sufficient. To check this, recall that T ∼ B(n, θ),
so

P (T = t) =

(
n

t

)
θt(1− θ)n−t.

We can focus on the case x1 + . . . + xn = t; if this fails, then the
conditional probability from (4.1) simply equals zero for all θ. With
this extra assumption in place, the condition T = t follows from X1 =
x1, . . . , Xn = xn, so the probability of both events occurring equals

P (X1 = x1, . . . , Xn = xn) = θx1+...+xn(1− θ)n−x1−...−xn(4.2)

= θt(1− θ)n−t.
Putting things together, we see that

P (X1 = x1, . . . , Xn = xn|T = t) =
P (X1 = x1, . . . , Xn = xn)

P (T = t)
=

1(
n
t

) ,
which is independent of θ, as claimed. (This final result could have
been written down right away with no calculation: each of the

(
n
t

)
sequences x1, . . . , xn that contain exactly t ones is equally likely, given
that T = t.)

Now let’s try to interpret this. One possible view of (4.1) is to say
that once you have been informed about the value of T , further details
about the values that your random sample took are of no use if you
want to estimate θ. This is so because the conditional probabilities
of such events, given the value of T , are independent of θ, and thus
the occurrence of such an event does not support any kind of inference
on θ, on top of what T already told you. In this sense, just knowing
T is sufficient. In the example, this claim is intuitively obvious: say
you flip a coin ten times. If you are now told how many times heads
occurred (= the sufficient statistic), you know everything about the
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random sample that is worth knowing; it would not be of any additional
help if you were now also told in which order exactly those outcomes
occurred. (I should also point out that we are not trying to find the
best formalization of certain intuitive ideas that we associate with the
word sufficient; rather, sufficiency in the technical sense is an important
notion because of various mathematical properties that are enjoyed by
sufficient statistics.)

Some of our observations from the above calculation are valid in
general. Clearly, the probability from (4.1) equals zero unless t =
T (x1, . . . , xn). Moreover, if indeed t = T (x1, . . . , xn), then

P (X1 = x1, . . . , Xn = xn|T = t) =
P (X1 = x1, . . . , Xn = xn)

P (T = t)

=
L(x1, . . . , xn)

P (T = t)
,(4.3)

where we again used the notation L for the likelihood function, as in-
troduced in Chapter 3. This suggests the following version of Definition
4.1 for continuous distributions: we call a statistic T sufficient if

(4.4)
L(x1, . . . , xn; θ)

fT (t; θ)
, t = T (x1, . . . , xn)

is independent of θ. In this setting, the likelihood function is the prod-
uct of the individual densities: L = f(x1) · · · f(xn)

Example 4.1. Consider again the uniform distribution f = 1/θ on 0 ≤
x ≤ θ. Is T = max(X1, . . . , Xn) a sufficient statistic? Or how about
X? (Perhaps think for a moment about what the answers should be
before you read on.)

Recall from Example 3.9 that T has density f(t) = ntn−1/θn. More-
over, L = θ−n if t = maxxj ≤ θ, and L = 0 otherwise. So the quotient
from (4.4) equals 1/(ntn−1), which is independent of θ, and thus T is
sufficient.

As for X, I actually don’t want to discuss this in general as the
formulae get out of hand quickly. Instead, I want to focus on n = 2
and the statistic U = X1 + X2. As usual, we find its distribution by
convolving the density f = (1/θ)χ(0,θ) of Xj with itself. For 0 ≤ t ≤ θ,
the product f(s)f(t − s) is non-zero (and thus = 1/θ2) for 0 ≤ s ≤ t,
and thus fU(t) = t/θ2 for these t. The case θ ≤ t ≤ 2θ is similar, and
we find that

fU(t) =

{
t/θ2 0 < t < θ

(2θ − t)/θ2 θ < t < 2θ
.
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So if θ < x1 + x2 < 2θ, x1, x2 < θ, and t = x1 + x2, then the quotient
from (4.4) equals 1/(2θ− t). This depends on θ, so U is not sufficient.

Again, everything makes perfect sense on an intuitive level also: if
you are told what the largest observed datum is equal to, then, given
this, any set of values of the random sample consistent with this in-
formation is equally likely, and extra information on θ isn’t going to
change anything. On the other hand, if I tell you that X = 1, say, then
θ could be 1, or it could be that θ = 100, or anything else ≥ 1, and
this dramatically affects how likely given configurations are.

Exercise 4.1. Now consider the discrete analog, the urn with an un-
known number N ≥ 1 of balls in it. More formally, consider the distri-
bution P (X1 = j) = 1/N for j = 1, 2, . . . , N . Show that T = maxXj

is again sufficient.

Exercise 4.2. Consider a random sample of size n = 2 for the coin flip
distribution P (X1 = x) = θx(1− θ)1−x, x = 0, 1.
(a) It seems intuitively clear that T = X1 is not sufficient (the loss of
information suffered by dropping X2 should affect our ability to draw
inferences on θ). Can you show this more formally?
(b) Show that T = X1 + 2X2 is sufficient.
(c) However, show that T = X1 + X2 + 2X3 is not sufficient for a
random sample of size n = 3.

Sufficiency can often be more conveniently checked with the following
criterion:

Theorem 4.2 (Neyman). T = T (X1, . . . , Xn) is a sufficient statistic
if and only if there are functions k1, k2 ≥ 0 such that

(4.5) L(x1, . . . , xn; θ) = k1(T (x1, . . . , xn); θ)k2(x1, . . . , xn).

In other words, the θ dependence can be isolated in a factor that
depends on the values of the random sample only through the statistic
T .

Let’s quickly revisit our examples from above. In the coin flip ex-
ample, we see from (4.2) that L indeed has such a factorization, with
k1 = L = θt(1 − θ)n−t (writing t = T (x1, . . . , xn) = x1 + . . . xn, as
before) and k2 = 1.

For a random sample drawn from a uniform distribution, as in Ex-
ample 4.1, we have L = χ(t,∞)(θ)θ

−n, and again, this can be our k1,
and k2 = 1.

Proof of Theorem 4.2. I’ll discuss the case of a discrete distribution;
the continuous case is similar. If T is sufficient, then, as we saw above,
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in (4.3), the quotient

k2(x1, . . . , xn) :=
L(x1, . . . , xn; θ)

P (T = T (x1, . . . , xn))

is independent of θ, and we obtain the required factorization if we put
k1(t; θ) = P (T = t) = Pθ(T = t).

Conversely, if (4.5) holds, then

P (T = t) =
∑
T (x)=t

L(x) = k1(t; θ)
∑
T (x)=t

k2(x) ≡ k1(t; θ)F (t).

Here, the sums are over those x1, . . . , xn for which T (x1, . . . , xn) = t,
and I’ve used the convenient abbreviation x = (x1, . . . , xn). Let again
t = T (x). Then, referring to (4.3) and (4.5) one more time, we obtain

P (X1 = x1, . . . , Xn = xn|T = t) =
L(x; θ)

P (T = t)
=
k1(t; θ)k2(x)

k1(t; θ)F (t)
=
k2(x)

F (t)
,

and this is independent of θ, as required. �

With the help of Theorem 4.2, we can often extract sufficient statis-
tics quite easily by just taking a good look at the likelihood function.
Let’s discuss some examples.

Example 4.2. The Poisson distribution P (X = x) = (θx/x!)e−θ has the
likelihood function

L =
θx1+...+xn

x1! · · ·xn!
e−nθ.

From this, we can now read off that T = X1 + . . . + Xn is a sufficient
statistic: indeed, this gives a factorization as in (4.5), with k1 = θte−nθ

and k2 = 1/(x1! · · ·xn!).

Example 4.3. Recall that the χ2(θ) distribution has the density f(x) =
cθx

θ/2−1e−x/2 (x ≥ 0), for θ = 1, 2, . . .. Thus the likelihood function
equals

L = cnθ (x1 · · ·xn)θ/2−1e−(1/2)(x1+...+xn),

and now Neyman’s Theorem shows that T = X1X2 · · ·Xn is a sufficient
statistic.

Exercise 4.3. Consider the N(0, σ) distribution, and let θ = σ2. Find
a sufficient statistic.

Exercise 4.4. Consider the N(θ, 1) distribution. Find a sufficient statis-
tic.

Exercise 4.5. Consider the exponential distribution f(x; θ) = θe−θx

(x > 0). Find a sufficient statistic.
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Exercise 4.6. Suppose the parameters θ, η and the statistics S, T are
related by θ = g(η) and S = h(T ), respectively. Suppose that S is suffi-
cient for θ. Show that then T is sufficient for η. (So, roughly speaking,
sufficiency is not affected by taking functions of the parameter and/or
the statistic.)
Suggestion: Use the criterion from Neyman’s Theorem.

4.2. Conditional expectation. Our first central result on sufficient
statistics will depend on the notion of conditional expectation, so we’ll
discuss this first. Let X, Y be random variables. We want to define
E(X|Y ), the conditional expectation of X, given Y . This will be a
random variable (!), and we are trying to formalize the idea of a partial
averaging process over those parts of the sample space on which Y is
constant. Alternatively, you can think of E(X|Y ) at a point ω ∈ Ω as
the average value of X, given that Y (ω) = y.

An example will be useful to make these ideas more concrete. Let’s
roll a die, so Ω = {1, 2, . . . , 6}, and we (of course) use Laplace proba-
bility on this sample space. Let X(ω) = ω and

Y (ω) =

{
1 ω = 2, 4, 6

−1 ω = 1, 3, 5
.

So X just records the outcome, and Y tells us whether this number is
even or odd. If we are now told that Y = 1 occurred, then the average
value of X consistent with this information is (1/3)(2 + 4 + 6) = 4.
Similarly, if Y = −1, then the new average value of X, given this
information, equals (1/3)(1 + 3 + 5) = 3. In more abstract style, we
can say that we obtained these values as weighted averages, taken with
respect to the conditional probabilities:

4 =
6∑

k=1

kP (X = k|Y = 1), 3 =
6∑

k=1

kP (X = k|Y = −1)

since P (X = k|Y = 1) = 1/3 if k is even and = 0 if k is odd, and
similarly for P (X = k|Y = −1). This can be our definition of the
conditional expectation in the discrete case:

(4.6) E(X|Y )(ω) =
∑
k

xkP (X = xk|Y = y), y = Y (ω)

Exercise 4.7. Show that conditional expectation is linear (just like the
plain expectation), that is, E(aX + bY |Z) = aE(X|Z) + bE(Y |Z).

In the following exercise, we rewrite (4.6) in a way that makes the
partial averaging view of the conditional expectation even more ex-
plicit:
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Exercise 4.8. Partition Ω =
⋃
Aj, where Aj is the event that Y = yj.

Show that then

E(X|Y )(ω) =

∑
ω′∈Aj

X(ω′)P ({ω′})
P (Aj)

for ω ∈ Aj.

Proposition 4.3. E(X|Y ) = f(Y ) for some function f , and

(4.7) E(E(X|Y )) = EX.

It is in fact also possible to characterize conditional expectation by
a similar (but somewhat more general) pair of properties, and this is
the path usually taken in more advanced (= based on measure theory)
treatments. For our purposes, the more direct definition given above
is more convenient and accessible.

Proof. The first property is an immediate consequence of the defini-
tion (4.6) because this in particular says that E(X|Y )(ω) really only
depends on the value of Y (ω), not on ω itself, so f may be obtained
by sending y ∈ R with Y (ω) = y to f(y) = E(X|Y )(ω).

As for the second property, we compute

E(E(X|Y )) =
∑
ω∈Ω

E(X|Y )(ω)P ({ω})

=
∑
ω∈Ω

∑
k

xkP (X = xk|Y = Y (ω))P ({ω})

=
∑
k

xk
∑
j

P (Y = yj)P (X = xk|Y = yj)

=
∑
k

xkP (X = xk) = EX.

Here, we passed to the third line by partitioning Ω into the events
Y = yj, for all possible values yj of Y . We then recognize the resulting
sum over j as the total probability formula for P (X = xk) and so arrive
at the formula from the fourth line. �

Exercise 4.9. Show that if Y is a constant random variable, say Y = 0
with probability 1, then E(X|Y ) = EX.

Theorem 4.4. If X, Y are independent, then E(X|Y ) = EX. If
X = f(Y ) is a function of Y , then E(X|Y ) = X. More generally,
E(Xf(Y )|Y ) = f(Y )E(X|Y ).

These properties are immediately plausible: if X, Y are independent,
then knowledge about Y is useless for making predictions on X, so all



44 Christian Remling

we can do is take the normal expectation. Note also that the first
claim really says that the random variable E(X|Y ) is constant and
this constant equals the number EX. Similarly, a function of Y can
be predicted with certainty if Y is given, so no averaging is necessary
here.

Proof. If X, Y are independent, then P (X = xk|Y = y) = P (X = xk),
so the first claim follows from (4.6). Similarly, if X = f(Y ), then
P (X = xk|Y = y) = 1 if xk = f(y) and P (X = xk|Y = y) = 0
otherwise, and P (Xf(Y ) = xk|Y = y) = P (X = xk/f(y)|Y = y)
if f(y) 6= 0. If f(y) = 0, then P (Xf(Y ) = 0|Y = y) = 1. These
observations combined with (4.6) give the last two statements. �

Exercise 4.10. Work out this last part of the argument in more detail.

The following property will be especially important for us. Again,
everything makes immediate intuitive sense. The theorem says that a
partial averaging process will not increase the variance.

Theorem 4.5. Var(E(X|Y )) ≤ Var(X).

Proof.

Var(X) = E(X − E(X|Y ) + E(X|Y )− EX)2

= E(X − E(X|Y ))2 + E(E(X|Y )− EX)2(4.8)

+ 2E(X − E(X|Y ))(E(X|Y )− EX)

I now claim that this last expectation equals zero. To see this, we
condition on Y . Recall from Proposition 4.1 that E(. . . |Y ) is a function
of Y . Thus, by Theorem 4.4,

E [(X − E(X|Y ))(E(X|Y )− EX)|Y ]

= (E(X|Y )− EX)E(X − E(X|Y )|Y )

= (E(X|Y )− EX)(E(X|Y )− E(X|Y )) = 0,

and since (4.7) implies that EU = 0 as soon as E(U |V ) = 0 for some
V , my claim from above follows.

Moreover, by the same identity, E(E(X|Y )) = EX, so the second
term from (4.8) equals Var(E(X|Y )) and since the third term has just
been identified as zero, the claim of the theorem now follows. �

Now let’s discuss the continuous case. We introduce the conditional
density

(4.9) fX|Y (x, y) =
fX,Y (x, y)

fY (y)
;
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here fX,Y denotes the joint density of X, Y . Then, in complete analogy
to (4.6), we define E(X|Y ) as the random variable that is given by

(4.10) E(X|Y )(ω) =

∫
xfX|Y (x, y) dx, y = Y (ω).

All the general properties of E(X|Y ) that were discussed above also
hold in the continuous setting.

Example 4.4. Let X, Y be two random variables with joint density

(4.11) f(x, y) =

{
6y 0 < y < x < 1

0 otherwise
.

Let’s confirm that this is indeed a density:∫ 1

0

dy

∫ 1

y

dx 6y = 6

∫ 1

0

y(1− y) dy = 6

(
1

2
− 1

3

)
= 1,

as required.
Next, let’s try to find Z = E(Y |X). For this, we will need the density

of X, which we obtain as one of the marginal densities of f :

fX(x) =

∫
f(x, y) dy = 6

∫ x

0

y dy = 3x2, 0 < x < 1,

and fX(x) = 0 otherwise.

Exercise 4.11. Show more explicitly that this method of finding the
individual densities is correct. Suggestion: Express P (X ≤ x) in terms
of the joint density and then take the derivative to find the density; it
might be a good idea to do this in a general setting, not for the concrete
density from above.

Now by (4.10), when X = x, then

Z = E(Y |X) =

∫ x

0

y
6y

3x2
dy =

2x

3
, 0 < x < 1.

More succinctly (and precisely), Z = 2X/3.
Finally, let’s take a look at Var(Y ) and Var(Z). Let’s start out with

this latter random variable, since we already have the density of X.
We compute

EX =

∫ 1

0

x · 3x2 dx =
3

4
, EX2 = 3

∫ 1

0

x4 dx =
3

5
,

so Var(X) = (3/5)− (3/4)2 = 3/80 and thus Var(Z) = 1/60.
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To find the density of Y , we go back to (4.11):

fY (y) =

∫ 1

y

6y dx = 6y(1− y), 0 < y < 1

This gives

EY = 6

∫ 1

0

y2(1− y) dy =
1

2
, EY 2 = 6

∫ 1

0

y3(1− y) dy =
3

10
,

thus Var(Y ) = 1/20. Notice that this is larger than Var(E(Y |X)), as
predicted by Theorem 4.5.

Exercise 4.12. LetX, Y be random variables with joint density f(x, y) =
x+y for 0 < x, y < 1 and f(x, y) = 0 otherwise. Proceed as in Example
4.4 to find E(Y |X). Then again compare Var(Y ) with Var(E(Y |X)).

4.3. The Rao-Blackwell Theorem. Recall that among all unbiased
estimators, we prefer those with small variance about the correct ex-
pected value. Now Theorem 4.5 may be interpreted as saying that the
variance can be improved by conditioning; moreover, (4.7) guarantees
that this will not introduce a bias. These simple, but extremely useful
observations already give us a good part of the somewhat grandiosely
named Rao-Blackwell Theorem.

Theorem 4.6 (Rao-Blackwell). Let T1 be an unbiased estimator, and
let Y be a sufficient statistic. Then T2 = E(T1|Y ) = ϕ(Y ) defines a
new unbiased estimator with Var(T2) ≤ Var(T1).

In short: unbiased estimators can be improved by conditioning on
sufficient statistics. Also, given an arbitrary unbiased estimator, there
is a function of the sufficient statistic that performs at least as well,
perhaps better.

Exercise 4.13. Why do we want Y to be a sufficient statistic? Why
don’t we get the same conclusions for an arbitrary statistic Y , by the
argument based on Theorem 4.5 and (4.7) that we just outlined? Warn-
ing: The answer to this is simple, but the notation we are currently
using somewhat deceptively hides the crucial point.

Proof. As already observed, the inequality on the variances is Theo-
rem 4.5, applied to the case at hand. Also, (4.7) shows that ET2 =
E(E(T1|Y )) = ET1 = θ, as required. Finally, T2 is indeed a statistic
because (in the discrete case) the sufficiency of Y implies that the con-
ditional probabilities P (T1 = t|Y = y) are independent of θ and thus
T2 is independent of θ as well, by (4.6). (Please go back to Exercise
4.13 now if you haven’t solved it already.) �
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We said in the first section that we can think of a sufficient statistic
as containing all the information about the random sample that is
worth knowing. If this intuition is correct, then it would seem foolish
to let an estimator take distinct values on a part Y = y of the sample
space where the sufficient statistic is constant, and indeed the Rao-
Blackwell Theorem says that we can improve estimators by ironing out
such unnecessary variations.

Definition 4.7. We call a statistic T a minimum variance unbiased
estimator (MVUE) if T is unbiased and Var(T ) ≤ Var(U) for all unbi-
ased estimators U (and for all θ).

So an efficient statistic is an MVUE, but there could be other sit-
uations (which we will actually encounter rather soon) where the CR
bound isn’t achieved, but (non-efficient) MVUEs still exist.

The Rao-Blackwell Theorem shows that if we can come up with a
sufficient statistic Y , then the search for an MVUE can be restricted
to functions T = ϕ(Y ) of Y . This is so because if U is an MVUE, then
so is T = E(U |Y ), by the Rao-Blackwell Theorem, and this statistic is
a function of Y , by the same result (and Proposition 4.3).

Example 4.5. Back to the coin flip example. In fact, to keep things
simple, I now only want to consider random samples of size n = 2. We
know that Y = X1 +X2 is sufficient. (We also know that T = X = Y/2
is efficient, and thus the MVUE, but let’s ignore this for now.)

Let’s consider the estimator

T =
1

4
X1 +

3

4
X2.

This is unbiased, but

Var(T ) =

((
1

4

)2

+

(
3

4

)2
)

Var(X1) =
5

8
Var(X1) =

5

8
θ(1− θ),

which is larger than the optimal value (1/2)θ(1− θ). By Theorem 4.6,
T can be improved by conditioning on Y , so what is U = E(T |Y )
equal to? If Y = 0, then X1 = X2 = 0, so T = 0, and no averaging
is necessary in this case, and U = 0 as well. Similarly, Y = 2 implies
that X1 = X2 = 1, and thus U = 1 in this case. If Y = 1, then
X1 = 0, X2 = 1 or the other way around, and the two conditional
probabilities satisfy

P (X1 = 0, X2 = 1|Y = 1) = P (X1 = 1, X2 = 0|Y = 1) = 1/2.

Thus U = 1/2 · 3/4 + 1/2 · 1/4 = 1/2.



48 Christian Remling

This can be summed up by noticing that U = Y/2 = X; the process
of conditioning T on the sufficient statistic Y recovers the MVUE.

Exercise 4.14. Show by a similar calculation that E(T |Y ) = X also
if T = X1, and Y = X1 + X2 is as above. In fact, can you also
show that E(X1|Y ) = X for a random sample of arbitrary size (and
Y = X1 + . . .+Xn)?

It is no coincidence that we are invariably led back to X in these
examples. Later we will see that this is the only unbiased function of
Y .

Example 4.6. Let’s take another look at the urn with an unknown
number of balls in it: P (X1 = x) = 1/N for x = 1, 2, . . . , N and
P (X1 = x) = 0 otherwise, and N = 1, 2, . . . takes the role of the pa-
rameter θ. You showed in Exercise 4.1 that Y = maxXj is a sufficient
statistic; recall also that T = 2X − 1 is unbiased (which seemed pretty
much the only thing that could be said in favor of this estimator).
Backed up by the Rao-Blackwell Theorem, let’s now try to improve T
by conditioning on Y . As a warm-up, let’s first do this for a random
sample of size n = 2.

If Y = 1, then X1 = X2 = 1, so T = 1 as well and thus U =
E(T |Y ) = 1 on this part of the sample space. If Y = 2, then the three
outcomes (1, 2), (2, 1), (2, 2) for (X1, X2) are consistent with this value
of Y , and P (X1 = x1, X2 = x2|Y = y) = 1/3 for each of these.

Exercise 4.15. Show this in more detail. In fact, can you right away
show the general claim that P (X1 = x1, . . . , Xn = xn|Y = y) has a
constant value for all outcomes x1, . . . , xn with Y (x1, . . . , xn) = y?

It follows that U = (1/3)(2 + 2 + 3) = 7/3 if Y = 2.
We can continue in this style to work out U on the set where Y =

3, 4, . . ., but we should in fact be ready for the general case now. So
let’s consider a random sample of size n, and suppose that Y = y. Then
the possible values of the random sample are those n tuples xj with
1 ≤ xj ≤ y for j = 1, 2, . . . , n and xk = y for at least one index k. By
Exercise 4.15, all these outcomes have the same conditional probability,
so we can find probabilities by counting.

More precisely, we have (when Y = y)

(4.12) E(T |Y ) =
1

M(y)

∑
x:Y (x)=y

T (x),

where we again abbreviated x = (x1, . . . , xn), and M(y) denotes the
number of x with Y (x) = y. Since this is all sequences x drawn from
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1, 2, . . . , y except those that avoid y altogether, we have

M(y) = yn − (y − 1)n.

Next, let’s take a look at the sum from (4.12). Recall that T = 2X − 1
and focus on X. Consider for the moment only those x that take
the value y exactly k times, for a fixed k = 1, . . . , n. There are

(
n
k

)
choices for the slots where those y’s occur. If we fix such a choice, say
x1 = . . . = xk = y (for notational convenience), then

X(x) =
1

n
(ky + xk+1 + . . .+ xn) .

Now take the sum over xj = 1, 2, . . . , y − 1 for j > k. Since

y−1∑
x=1

x =
(y − 1)y

2
,

we obtain
y−1∑

xk+1,...,xn=1

X(x) =
1

n
(y − 1)n−k

(
ky + (n− k)

y

2

)
,

and there are
(
n
k

)
such (partial) sums for fixed k, hence∑

Y (x)=y

T (x) =
1

n

n∑
k=1

(
n

k

)
(y − 1)n−k(n+ k)y −M(y).

We can simplify this sum. Notice first of all that
n∑
k=1

(
n

k

)
1k(y − 1)n−k = yn − (y − 1)n = M(y).

Next, (
n

k

)
k =

n!

(k − 1)!(n− 1− (k − 1))!
= n

(
n− 1

k − 1

)
,

so
n∑
k=1

(
n

k

)
(y − 1)n−kk = n

n−1∑
k=0

(
n− 1

k

)
(y − 1)n−1−k = nyn−1.

Putting things together, we find that∑
Y (x)=y

T (x) = yM(y) + yn −M(y)

and thus, by (4.12),

E(T |Y ) = Y − 1 +
Y n

Y n − (Y − 1)n
= Y +

(Y − 1)n

Y n − (Y − 1)n
.
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The last fraction can be viewed as a small correction, which makes
our estimator unbiased, and essentially this is our favorite estimator
Y = maxXj.

Example 4.7. This worked reasonably well, so perhaps we can now also
do the continuous version of this example. We consider the uniform
distribution on (0, θ), that is, f(x) = 1/θ for 0 < x < θ. We know that
the analogous statistic Y = maxXj is again sufficient, and T = 2X is
an unbiased estimator. Let’s try to work out U = E(T |Y ). I’ll do this
somewhat informally, which will simplify the calculation tremendously.
(A rather different, more rigorous approach will be discussed later,
when we have additional theory available.)

If Y = y, then Xj = y for at least one j, and in fact I will ignore
the possibility of having two or more such indices j. This is justified
(we hope) because we are dealing with continuous random variables
now, which take a given precise value with probability zero. Then, if
we fix a j and set Xj = y, the remaining Xk are uniformly distributed
over (0, y), and thus the partial average of S = X1 + . . .+Xn becomes
y+(n−1)y/2. Since this is independent of j, it follows that E(S|Y ) =
Y + (n − 1)Y/2 as well (as in the previous example, we build up the
partial average defining the conditional expectation as an average of
partial averages over smaller parts). Thus

E(T |Y ) =
2

n
E(S|Y ) =

n+ 1

n
Y,

which is reassuring because this is exactly the high performance unbi-
ased estimator that we found earlier, in Chapter 3.

Example 4.8. Consider the N(0, σ) distribution; we are trying to esti-
mate the variance θ = σ2. You showed in Exercise 4.3 that Y =

∑
X2
j

is a sufficient statistic, and we also know that the sample variance
S2 = (1/(n−1))

∑
(Xj−X)2 is an unbiased estimator for θ. The Rao-

Blackwell Theorem suggests to improve matters by using the statistic
E(S2|Y ) instead. By a calculation that we already did a few times on
other occasions, we can write

(n− 1)S2 =
n∑
j=1

X2
j − nX

2
= Y − nX2

.

Now E(Y |Y ) = Y , so the first term poses no difficulties. As for the
second term, we multiply out and obtain

n2E(X
2|Y ) = E

(
n∑
j=1

X2
j

∣∣Y)+
∑
j 6=k

E(XjXk|Y ) = Y +
∑
j 6=k

E(XjXk|Y ).
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This last conditional expectation equals zero because Y is insensitive
to signs, so the conditional distribution of XjXk, given Y , is still sym-
metric about zero. Somewhat more formally, we can observe that if
we replace Xj by −Xj, then all (conditional and joint) distributions
involved here remain unchanged, so E(XjXk|Y ) = −E(XjXk|Y ). We
conclude that

E(S2|Y ) =
1

n− 1

(
Y − Y

n

)
=
Y

n
.

The Rao-Blackwell Theorem tells us that Y/n performs at least as
well as S2, and in fact we know from our earlier discussion in Example
3.11 that Y/n is efficient while S2 isn’t.

Example 4.9. Let’s return one more time to the uniform distribution
f(x) = 1/θ, 0 < x < θ, but this time I’ll proceed in a formally fully
correct way. Consider a random sample of size n = 3, and let M =
M(X1, X2, X3) be its median: we order the random sample Xj1 <
Xj2 < Xj3 , and M is defined as the middle value Xj2 . To find the
distribution of M , observe that

P (M ≤ x) = 3
x2(θ − x)

θ3
+
x3

θ3
;

indeed, the median will be ≤ x if either all three data are ≤ x (the last
term) or exactly two are ≤ x (the first term on the right-hand side).
By differentiating, we find that M has density

f(x) = 6
x(θ − x)

θ3
.

In particular, this implies that

EM =
6

θ3

∫ θ

0

x2(θ − x) dx =
θ

2
,

as could have been predicted from symmetry considerations. So 2M is
an unbiased estimator.

As usual, the Rao-Blackwell Theorem suggests to condition on Y =
max(X1, X2, X3). To do this, let’s first think about the joint distribu-
tion of M,Y . We have

P (M ≤ x, Y ≤ y) = 3
x2(y − x)

θ3
+
x3

θ3
, 0 < x ≤ y < θ,

by essentially the same argument as above: either all three data points
are ≤ x, or exactly two of them satisfy this condition and the third one
lies between x and y. Of course, if x > y, then the conditions become
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contradictory and the probability of the (now empty) event equals zero.
From this, we find the joint density as fM,Y = ∂2P/∂x∂y:

(4.13) fM,Y (x, y) =
6x

θ3
, 0 < x ≤ y < θ.

Exercise 4.16. Check our work by (re-)deriving the densities of M and
Y from (4.13).

Recall that (or derive it again) fY (y) = 3y2/θ3, and thus by (4.9)
fM |Y (x, y) = 2x/y2 if 0 < x ≤ y < θ.

Exercise 4.17. Observe that θ has dropped out of this formula. Are
you surprised at this? (Don’t just answer yes or no; find reasons for
your surprise or lack thereof.)

It follows that when Y = y, then

E(M |Y ) =

∫ y

0

x
2x

y2
dx =

2y

3
.

In other words, E(M |Y ) = 2Y/3.

Exercise 4.18. In the absence of any extra information, the Xj are
restricted to [0, θ], and thus by symmetry EM = θ/2, as we saw above.
If Y = y, then the Xj are now restricted to [0, y], so reasoning by
analogy, we expect that E(M |Y ) = Y/2, right? What is your answer
to this?

We wanted to improve the unbiased estimator 2M , and we have now
obtained E(2M |Y ) = 4Y/3. This is satisfying; just as in Example 4.7,
we recover (in the special case n = 3) the estimator (n + 1)Y/n one
more time.

Exercise 4.19. However, is T = 4Y/3 really better than 2M (the Rao-
Blackwell Theorem leaves open the possibility that both estimators
could have the same variance)? To answer this, recall from our dis-
cussion in Chapter 3 that Var(T ) = θ2/(3 · 5) = θ2/15; see especially
(3.11). Now compute Var(2M) and compare.

Exercise 4.20. Consider the density f(x) = θ−1e−x/θ (x > 0), and draw
a random sample of size n = 2.
(a) Show again that Y = X1 + X2 is sufficient (this also follows by
combining Exercises 4.5, 4.6).
(b) Find the joint density fX1,Y (x, y) and then the conditional density
fX1|Y (x, y); for this, you will need fY (y), which we discussed in Chapter
2, see pg. 25.
(c) Use your answer to part (b) to find E(X1|Y ).
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Another general observation about sufficient statistics worth making
is the following:

Theorem 4.8. Let Y be a sufficient statistic. If a unique MLE θ̂ exists,

then θ̂ = ϕ(Y ).

We said earlier that MVUEs, if they exist, are functions of a given
sufficient statistic, so this gives some additional confidence that MLEs

are reasonable. Of course, Theorem 4.8 just says that θ̂ is some function
of Y , and it may not be the right one. In fact, we know that MLEs
can easily fail to be unbiased.

Proof. This is an immediate consequence of Neyman’s theorem, which
says that the likelihood function may be factorized as follows:

L(x1, . . . , xn; θ) = k1(Y (x1, . . . , xn); θ)k2(x1, . . . , xn)

The MLE is defined by the condition that θ̂(x1, . . . , xn) maximizes L
for fixed values x1, . . . , xn, but since k2 is independent of θ, this is the
same as maximizing k1, and thus the solution to this maximization
problem only depends on Y (x1, . . . , xn). �

Exercise 4.21. Find at least four different examples (from our earlier
discussion of MLEs in Chapter 3) that confirm the claim of Theorem
4.8.


