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CHRISTIAN REMLING

1. Introduction

The material presented in these notes is taken from W. Feller, An
Introduction to Probability Theory and its Applications, I.

We will continue to analyze the properties of sums of independent,
identically distributed random variables

Sn = X1 + X2 + . . . + Xn.

We will only deal with the very specific situation where Xj only takes
the two values ±1, with equal probability (p = 1/2). You can think of
a random walk, performed as follows: at time j (j = 1, 2, . . .) you toss
a coin and then move one step to the left or to the right, according to
the outcome of the coin toss. The random variable Sn then gives you
your position at time n, if you start at the origin. Alternatively, you
can think of betting a dollar on heads in a series of coin tosses. Then
Sn records your winnings after n coin flips.

Recall that the central limit theorem (or its special case, the theorem
of de Moivre-Laplace) says that

lim
n→∞

P (a
√

n ≤ Sn ≤ b
√

n) =
1√
2π

∫ b

a

e−x2/2 dx.

Exercise 1.1. Derive this more carefully from the CLT.

We also saw earlier that the (one-dimensional) random walk is recur-
rent, that is, given any m ∈ Z, the probability that we will eventually
visit m is one. In fact, with probability one, the random walk will visit
every point infinitely many times.

Here, we want to study other asymptotic properties of Sn.
We need some notation. It is sometimes useful to think in terms of

paths leading from the origin (say) to another point. We can represent
these paths either as graphs in a coordinate system or by simply listing
the values of S0, S1, . . . , Sn, in this order. For example,

0 → 1 → 2 → 1 → 0 → −1 → 0

is a path of length 6 (meaning n = 6), starting and ending at the origin.
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Using this language, all paths are equally likely, so we can find prob-
abilities by counting paths. The total number of paths of length n,
starting at a fixed point, equals 2n because we have 2 choices at each
step (left or right).

For integers k, l, n, let Nn(k → l) denote the number of paths of
length n that lead from k to l. For instance, N2(1 → 1) = 2, because
we have the two possibilities

1 → 2 → 1, 1 → 0 → 1.

Sometimes we want to impose additional conditions on paths. We then
use self-explanatory notation: for example, we write Nn(k → l, S1 =
k − 1) for the number of paths of length n that start at k, then go to
k − 1 in the first step, and finally reach l in step n.

2. Some auxiliary results

Lemma 2.1 (The Reflection Lemma). Let k, l (and n) be positive in-
tegers. Then

Nn(k → l, Sj = 0 for some j = 1, 2, . . . n− 1) = Nn(−k → l)

Proof. This is geometrically obvious, and the term Reflection Lemma
suggests how to prove it: Given a path leading from k to l that visits
the origin at some point, reflect the part up to the first visit to the
origin about the x-axis. This establishes a one-to-one correspondence
between paths from k to l visiting the origin and arbitrary paths from
−k to l. �

Exercise 2.1. Work this out in more detail (picture!).

The following is a useful consequence of the Reflection Lemma. More-
over, this statement is also of some independent interest.

Lemma 2.2 (The Ballot Theorem). Suppose that l > 0. Then

Nn(0 → l, Sj > 0, j = 1, . . . , n) = Nn−1(0 → l − 1)−Nn−1(0 → l + 1)

=
l

n
Nn(0 → l).

This is called the Ballot Theorem because of the following applica-
tion: Suppose that in an election involving two candidates, candidate
A scores l votes more than candidate B. Then, if there was a total of
n votes, the probability that candidate A was ahead throughout the
counting is l

n
. This follows from Lemma 2.2 because the number of

ways of doing the counting is the same as the number of paths from 0
to l (given that this final outcome is already known), and in order for
candidate A to be ahead all the time, the path must not visit the origin
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again. By the identity from the Lemma, these paths are a fraction l/n
of all paths leading to l.

Proof. Clearly, if we want to go to l > 0 and also have to avoid the
origin, the first step has to lead to 1. Thus the left-hand side of the
identity we’re trying to prove equals

Nn−1(1 → l, Sj 6= 0, j = 1, . . . , n).

It now suffices to demand that Sj 6= 0 because if we start at 1 and
end up at l > 0 and avoid the origin all the time, then automatically
Sj > 0. By the Reflection Lemma, this number is equal to
(2.1)
Nn−1(1 → l)−Nn−1(−1 → l) = Nn−1(0 → l − 1)−Nn−1(0 → l + 1).

This proves the first part of Lemma 2.2.

Exercise 2.2. Prove that if there is a path of length n leading from 0 to
k, then there are nonnegative integers a, b so that n = a+ b, k = a− b.

Exercise 2.3. Use the fact that

Nn(0 → k) =

(
n

a

)
,

where a is as in Exercise 2.2 to prove that the last difference from (2.1)
equals (l/n)Nn(0 → l).

The solution of this Exercise then completes the proof of Lemma
2.2. �

Lemma 2.3. For a random walk starting at the origin, we have that

P (Sj 6= 0, j = 1, 2, . . . , 2n) = P (S2n = 0).

Proof. If the origin is never visited again, then either Sj > 0 for all
j > 0 or Sj < 0 for all j > 0. By symmetry, these alternatives have
the same probability, so

P (Sj 6= 0, j = 1, 2, . . . , 2n) = 2P (S1 > 0, . . . , S2n > 0)

Now by Lemma 2.2,

P (Sj > 0, . . . , S2n > 0) =
n∑

k=1

P (S1 > 0, . . . , S2n−1 > 0, S2n = 2k)

=
n∑

k=1

2−2n(N2n−1(0 → 2k − 1)−N2n−1(0 → 2k + 1))

= 2−2nN2n−1(0 → 1).
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The last line follows because the sum is telescoping. We can rewrite
this as

2−2n

(
2n− 1

n

)
= 2−2n (2n− 1)!

n!(n− 1)!
= 2−2n−1

(
2n

n

)
=

1

2
P (S2n = 0),

as claimed. �

We introduce the abbreviation

r2n = P (S2n = 0) =

(
2n

n

)
2−2n

for this probability (r as in return).

3. Last visits and the arc sine law

We can now find the probability distribution for the time of the last
return to the starting point. Assume that we start the random walk
at the origin. Let R2n be the time of the last return to the origin for
a random walk of length 2n. In other words, Sk = 0 for k = R2n, but
Sk 6= 0 for R2n < k ≤ 2n. Note also that we can have Sk = 0 only for
even k.

Theorem 3.1. P (R2n = 2k) = r2kr2n−2k.

Proof. As noted above, R2n = 2k precisely if S2k = 0, but S2k+1, . . . , S2n

6= 0. The probability that this happens is

P (S2k = 0)P (S2k+1, . . . , S2n 6= 0|S2k = 0).

The first probability is just r2k, and the conditional probability equals
r2n−2k by Lemma 2.3, because the individual steps of a random walk
are independent, so this is the probability that a random walk starting
at the origin, of length 2n− 2k, will never visit the origin again. �

We can analyze these probabilities in the limiting case n → ∞ in
some detail. The argument is similar to (but actually easier than) the
proof of the theorem of de Moivre-Laplace. In that proof, we saw that

r2m ' 1√
mπ

for large m. Thus

r2kr2n−2k '
1

π
√

k(n− k)
,
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at least if k is neither very small nor very close to n. We therefore
expect that for 0 < a < b < 1,

P

(
a ≤ R2n

2n
≤ b

)
'

∑
na≤k≤nb

1

π
√

k(n− k)

' 1

π

∫ nb

na

dx√
x(n− x)

=
1

π

∫ b

a

dy√
y(1− y)

.

This analysis is correct (and can be made rigorous). Moreover, the
integral can be solved explicitly. We obtain the following result:

Theorem 3.2 (Arc Sine Law for last visits). For 0 ≤ a < b ≤ 1, we
have that

lim
n→∞

P

(
a ≤ R2n

2n
≤ b

)
=

1

π

∫ b

a

dy√
y(1− y)

=
2

π

(
arcsin

√
b− arcsin

√
a
)

.

One remarkable feature about the limiting density is the fact that
it becomes largest (in fact, infinite) as either y → 0 or y → 1. This
means that the most probable scenarios are those where the last visit
to the origin occurs either very early or very late.

An even more remarkable result states that the time spent on one
side of the origin has the same limiting distribution.

Theorem 3.3 (Arc Sine Law for time spent on the positive side). Let
Nn be the number of indices k ∈ {1, 2, . . . , n} for which Sk > 0. Then,
for 0 ≤ a < b ≤ 1,

lim
n→∞

P

(
a ≤ Nn

n
≤ b

)
=

1

π

∫ b

a

dy√
y(1− y)

.

By the properties of this density observed above, that means ran-
dom walks where approximately equal proportions of time are spent on
either side of the origin are less likely than random walks where almost
all the time is spent on one side.

We will not prove Theorem 3.3 here.

4. Gambler’s ruin

You play the coin tossing game described at the beginning of these
notes with a capital of a dollars. You decide that you will quit as soon
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as your accumulated winnings reach b dollars. What is the probability
that you will go broke first? Let us denote this probability of the
gambler’s ruin by r(a, b). In the language of random walks, we are
asking: What is the probability that a random walk starting at the
origin will reach −a before it hits b?

This problem can be attacked by the method of difference equations:
We temporarily switch notations and write r0 instead of r(a, b). More
generally, we let rk be the probability that a random walk starting at
k will visit −a before it visits b. In the original problem, the first step
leads to either −1 or 1, with probability 1/2 in each case, thus

r0 =
1

2
r−1 +

1

2
r1.

The same argument shows that, more generally,

(4.1) rk =
1

2
(rk−1 + rk+1) , k = −a + 1, . . . , b− 1.

We also have the boundary conditions r−a = 1, rb = 0, which are obvi-
ous from the underlying problem, and these together with the difference
equation (4.1) determine rk uniquely. We can proceed as follows: An
inspired guess shows that rk = 1 and rk = k both solve (4.1), and the
linear combination of these solutions gives us the general solution of
(4.1):

rk = C + Dk

(this can be derived more systematically by referring to general facts
about such difference equations). As the final step, we still need to find
the constants C, D from the boundary conditions. These now say that

C − aD = 1, C + bD = 0,

and the unique solution of this system of linear equations is

C =
b

a + b
, D =

−1

a + b
.

In particular, since r(a, b) = r0 = C = b/(a + b), we have indeed found
the probability for the gambler’s ruin:

Theorem 4.1 (Gambler’s ruin).

r(a, b) =
b

a + b

We can slightly rephrase this as follows: The probability that the
gambler will go broke against an adversary with fortune b is the quotient
of b and all the money in play (a + b), assuming that the game is
continued until one of the players is ruined. This is exactly what we
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should have expected on intuitive grounds: If your opponent owns a
fraction p of the total firepower, you will lose with probability p.

Similar methods can be used to find ruin probabilities for unfair
games, where (let’s say) P (Xj = 1) = p, P (Xj = −1) = q, with
p + q = 1, but p, q 6= 1/2. The following exercises pursue this a little
further:

Exercise 4.1. Show that the ruin probabilities rk satisfy the difference
equation

rk = qrk−1 + prk+1

and the boundary conditions r−a = 1, rb = 0.

Exercise 4.2. Show that the difference equation is solved by rk = 1 and
rk = (q/p)k, so that the general solution is given by

rk = C + D

(
q

p

)k

.

Use the boundary conditions to find C and D and conclude that

r(a, b) = r0 =
sb − 1

sb − s−a
, s ≡ q

p
.

Exercise 4.3. Suppose that the game is favorable for you (p > q),
but your opponent has unlimited financial resources (b → ∞). (This
becomes relevant if you want to open a casino.) Show that then

r(a) = lim
b→∞

r(a, b) =

(
q

p

)a

.

How much capital a would you need if you give yourself a hopefully
inconspicuous edge of just p = 0.51 and you want to run a risk of at
most P = 0.01 of going broke?

We can use ruin probabilities to derive a spectacular statement about
expected visits to other sites before the first return to the starting point.
Let us start out with the following simplified version of the problem:
You start a random walk at the origin, and the game will stop after
the first return to the origin. You get paid one dollar for each visit to
the point 1. What would you have to bet to make this a fair game?

In other words, we want to know: What is the expected number of
visits to 1 that occur before the first return to 0? Call this number
X (so X is a random variable). Clearly, P (X = 0) = 1/2 because a
visit to 1 is avoided precisely if the first step goes to −1. Similarly,
P (X = 1) = (1/2)2 because then the first step must go to 1, but the
second step must lead back to 0, to avoid a second visit to 1. These
are independent events and the individual probabilities both equal 1/2.
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More generally, this line of reasoning shows that P (X = k) = 2−k−1

and thus

EX =
∞∑

k=0

k2−k−1 = 1.

(To evaluate this series, the gadget of moment generating functions
comes in handy:

MX(t) = EetX =
∞∑

k=0

etk2−k−1 =
1

2− et
(t < ln 2),

so EX = M ′
X(0) = 1.)

What happens if we replace 1 by another point: I will again start a
random walk at the origin, and the game will stop as soon as I hit 0
again. You agree to pay me $1 each time I visit n = 1, 000, 000 (say)
while the game is still running. What do I have to wager to make this
a fair game? Who has the edge if I bet 50c? Please take a guess before
you read on.

This problem can actually be treated in the same way as the warm-
up problem. Let Xn be the number of visits to n before the first return
to 0. By symmetry, we can assume that n > 0. Also, we already
discussed the case n = 1, so we will in fact assume that n > 1.

First of all, what is P (Xn = 0)? This can happen in two ways: Either
the first step goes to −1 (probability 1/2), or it goes to +1 (again
the probability that this happens is 1/2), but then the random walk
returns to 0 before it reaches n for the first time. This latter probability,
however, is a ruin probability: it equals r(1, n− 1). Therefore

P (Xn = 0) =
1

2
+

1

2
r(1, n− 1) = 1− 1

2n
.

If we want to have Xn = 1, the random walk must go to n without
visiting 0 again. As we just saw, this happens with probability 1/(2n)
(we just discussed the complement of this event). Moreover, we must
then go back from n to 0 without hitting n a second time. By sym-
metry and independence, this event has the same probability 1/(2n).
Therefore

P (Xn = 1) =

(
1

2n

)2

.

In general, in order to have Xn = k, we first must go straight to n
(probability 1/(2n)), then visit n again k − 1 times without hitting 0
(probability 1− 1/(2n) each time) and finally return to 0 without vis-
iting n again (probability 1/(2n)). We have thus proved the following:
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Theorem 4.2.

P (Xn = 0) = 1− 1

2n
, P (X = k) =

(
1

2n

)2 (
1− 1

2n

)k−1

(k ≥ 1)

In particular, we have the following amazing consequence:

Corollary 4.1. We have EXn = 1, independently of n.

Proof. Again, this can be obtained conveniently from the moment gen-
erating function of Xn. Note that the distribution of Xn has the form

P (X = 0) = p, P (X = k) = (1− p)2pk−1 (k ≥ 1).

We will in fact show that EX = 1 for such a random variable, inde-
pendently of p. We compute

M(t) = p + (1− p)2

∞∑
k=1

etkpk−1 = p +
et(1− p)2

1− pet

= p +
(1− p)2

e−t − p
(t < − ln p),

so EX = M ′(0) = 1, as claimed. �

It is actually not hard to also understand this intuitively. While it is
very unlikely that you will reach a big n (n = 1, 000, 000, say) before the
game stops, if you manage to get there, you can expect huge winnings
because now a return to the origin is just as unlikely. To substantiate
this line of reasoning, let us take a look at P (X ≥ N |X ≥ 1) (the
probability that you will win at least N dollars, given that you win
something). You are at n, and you now need to return at least N − 1
times, so

P (X ≥ N |X ≥ 1) =

(
1− 1

2n

)N−1

.

(This can also be derived more formally from Theorem 4.2: you then
use the fact that the conditional probability equals P (X ≥ N)/P (X ≥
1) and work out these probabilities.)

If N = αn with α > 0 and n is large, then, since (1− 1/n)n → 1/e,
this says that

P (X ≥ N |X ≥ 1) ' e−α/2.

For example, if n = 1, 000, 000 and you win at all, then you will win at
least $1,000,000 with probability approximately e−1/2 ' 0.61. You will
win $5,000,000 or more with probability ' e−5/2 ' 0.082. On the other
hand, if you win at all, you will win less than $1,000 (or α = 10−3)
only with probability ' 1− e−0.0005 ' 5 · 10−4 = 0.05%.



10 CHRISTIAN REMLING

Incidentally, this also shows that if someone foolishly offers you to
play the game with n = 1, 000, 000 and a bet of just 50c, you should
only accept if your adversary has a sufficiently large fortune to make the
gigantic payoffs that inevitably will come in the long run. By the same
token, you must have a large fortune yourself because you might have
to wait for quite a while before your first winnings come in. Without
that large fortune, you could be broke before you can reap the benefits
of your superior command of probability theory.


