
Hp SPACES

CHRISTIAN REMLING

1. Fourier series

We denote the unit disk and unit circle in the complex plane by
D = {z ∈ C : |z| < 1} and T = {z : |z| = 1}, respectively. (T as in
torus, because that and not Sd is the proper object in higher dimensions
in this context.) T can be naturally identified with an interval of length
2π, say I = [0, 2π), by mapping I → T , x 7→ eix. (You are perhaps
used to the theory being developed on I, but T is slightly preferable
here because its topology is more useful. This topology comes into play
for example when we talk about continuity of functions f : T → C.)
In particular, we can use such a map to move Lebesgue measure over
to T . We also normalize and give the full circle measure 1. We will
denote this (Borel) measure on T by σ, so

σ({eix : a < x < b}) =
b− a
2π

, 0 ≤ a < b ≤ 2π.

In other words, σ is the normalized arc length measure.
Recall next that the space Lp(T ) (with the measure σ understood,

but not indicated in the notation) consists of the Borel measurable
functions f : T → C with

∫
T
|f |p dσ < ∞ if 1 ≤ p < ∞, and L∞(T )

contains the essentially bounded measurable functions. In both cases,
functions that agree almost everywhere are usually identified.

Exercise 1.1. Show that Lp(T ) ⊆ Lq(T ) if p ≥ q and that C(T ) ⊆
Lp(T ) for all 1 ≤ p ≤ ∞.

For f ∈ L1(T ), we define its Fourier coefficients as

(1.1) an(f) =

∫
T

f(z)z−n dσ(z), n ∈ Z.

If we make use of the correspondence I → T that we just discussed,
then this takes the more familiar form

an =

∫ 2π

0

f(eix)e−inx
dx

2π
.
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We will also often, somewhat inconsistently from a formal point of
view but conveniently, mix these two forms and write things like an =∫
T
f(eix)e−inx dσ(x). The notation f̂n = an(f) is also common.
The cleanest theory of the Fourier transform is obtained on L2(T ).

This is a Hilbert space, with scalar product

(1.2) 〈f, g〉 =

∫
fg dσ.

It’s now easy to check that the exponentials en(x) = einx, n ∈ Z form
an orthonormal system (ONS), that is,

〈em, en〉 = δmn.

Exercise 1.2. Prove this.

This already implies Bessel’s inequality: if f ∈ L2(T ), then∑
n∈Z

|an(f)|2 ≤ ‖f‖22.

In particular, an ∈ `2(Z) if f ∈ L2. But we will see in a moment that
this actually holds with equality.

In fact, it can be shown that {en : n ∈ Z} is an orthonormal basis
(ONB) of L2(T ), which means, in addition to being an ONS, that the
closed linear span of these functions is the whole space L2(T ). The
details of the argument (many different ones are possible, in fact) are
not important for us, so I don’t want to discuss it here. It follows that
any f ∈ L2(T ) can be expanded in terms of the en, and the expansion
coefficients are given by 〈en, f〉, but this is an(f), by comparing (1.1)
with (1.2) (and recall that z−1 = z for z ∈ T ). It also follows that we
can, conversely, start out with desired expansion coefficients (as long
as they are consistent with Bessel’s inequality) and then there will
be a corresponding function. (I obtain these conclusions by applying
Hilbert space tools to the case at hand, so if you are not familiar
with this material, these steps will not be clear. In this case, please
try to read up on this; for example, take a look at Chapter 5 of my
Functional analysis lecture notes, which are available on my homepage.)
We summarize:

Theorem 1.1. If f ∈ L2(T ), then (Parseval’s identity)∑
n∈Z

|an(f)|2 = ‖f‖22,

and f has the expansion

(1.3) f(eix) =
∑
n∈Z

ane
inx.
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Conversely, if
∑
|bn|2 < ∞, then there is a unique f ∈ L2(T ) with

an(f) = bn.

Another way of saying this is to point out that the Fourier transform
f 7→ (an)n∈Z is a unitary map from L2(T ) onto `2(Z).

The Fourier inversion formula (1.3) needs careful interpretation in
our current context. The convergence takes place in L2(T ). In other
words, if SN(x) =

∑
|n|≤N ane

inx denotes a (symmetric) partial sum,

then what we have is ‖SN − f‖2 → 0 as N →∞. This, by itself, does
not imply that also SN(x) → f(eix) pointwise for almost every x (it
does follow that this will hold after passing to a suitable subsequence
Nj →∞), and in fact this question, does the Fourier series of an L2(T )
function converge pointwise a.e.?, was open for a long time until it was
finally answered by Carleson, in the affirmative, in 1966.

This completely clarifies (1.3) for f ∈ L2(T ). Note that this case is
already a little delicate in the sense that absolute convergence of (1.3)
is not guaranteed; that would correspond to the stronger (than a ∈ `2)
property a ∈ `1. So we already have to rely on partial cancellations
due to oscillations. There are other surprises in store. For example,
Kolmogorov constructed a function f ∈ L1(T ) (and necessarily f /∈ L2)
for which the Fourier series from (1.3) diverges for all x.

For f ∈ L2, we now know that exactly the square summable se-
quences an ∈ `2 are possible as Fourier coefficients. What about the
Fourier coefficients of an f ∈ L1(T )? There is no good answer to this,
but one fundamental and easy general result is:

Theorem 1.2 (Riemann-Lebesgue lemma). Let f ∈ L1(T ). Then
an ∈ `∞ with ‖a‖∞ ≤ ‖f‖1, and an(f)→ 0 as n→ ±∞.

In other words, the Fourier transform maps L1 into c0 (the space of
sequences that converge to zero), but no claim is being made that the
map is also onto, and in fact this is false.

Proof. It is obvious from the definition of an that |an| ≤
∫
|f | dσ =

‖f‖1.
We not only have L2(T ) ⊆ L1(T ), but it is also true L2 is dense in

L1 (with respect to ‖ · ‖1). (A very useful fact that should definitely be
in your toolkit is that much smaller spaces of very nice functions, for
example C∞(T ), are already dense in Lp for any p <∞.) Thus, given
any ε > 0, we can pick a g ∈ L2(T ) with ‖g − f‖1 < ε. By the already
established first part of the theorem, this implies that

|an(g)− an(f)| = |an(g − f)| < ε.
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Moreover, an(g) ∈ `2, by Theorem 1.1, so in particular an(g) → 0 as
n→ ±∞, and thus we can find an N ≥ 1 such that |an(g)| < ε for all
|n| ≥ N . Putting things together, we then see that also |an(f)| < 2ε
for |n| ≥ N , as required. �

Exercise 1.3. Give an easy direct proof that L2 is dense in L1, by
considering gn = χ{|f |≤n}f for a given f ∈ L1.

I now want to do a very quick review, without proofs mostly, of
convolutions. The convolution of two functions f, g ∈ L1(T ) is defined
as

(1.4) (f ∗ g)(eix) =

∫
T

f(eit)g(ei(x−t)) dσ(t)

(you are probably familiar with this in the neater looking version (f ∗
g)(x) =

∫
f(t)g(x−t) dt on the real line rather than T ). This can indeed

be defined for f, g ∈ L1, for almost every x, and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.
Both these claims follow from Fubini-Tonelli, by (formally, at first)
integrating the formula for f∗g and then doing the x integral first. More
generally, if f ∈ L1 and g ∈ Lp, then f∗g ∈ Lp and ‖f∗g‖p ≤ ‖f‖1‖g‖p.

Exercise 1.4. Prove that the convolution product is commutative, f ∗
g = g ∗ f , and, if not bored by this, you could also verify that it in
fact has all the algebraic properties of a (ring) product. For example,
f ∗ (g + h) = f ∗ g + f ∗ h.

Convolutions are important mainly for two reasons. First of all, the
smoothness of a function can be improved by convolving with a nice
function. The general principle is that the convolution is always at
least as nice as the nicer of the two factors. A precise statement along
these lines is that if f ∈ L1 and g ∈ Ck, then f ∗ g ∈ Ck. Second,
convolving with a narrow high function of integral 1 produces an ap-
proximation to the original function. To formulate a rather general
precise statement along these lines, we first introduce the notion of an
approximate identity: a sequence of functions kn ∈ L1(T ) (or it could
also be a family of functions indexed by a real parameter rather than
n ∈ N, but I’ll focus on this case for now) is called an approximate
identity if

∫
T
kn dσ = 1, ‖kn‖1 ≤ C, and

(1.5) lim
n→∞

∫
|x|>δ
|kn(eix)| dσ(x) = 0

for every δ > 0 (and I now somewhat inconsistently imagine T being
parametrized by −π ≤ x < π, say). In other words, kn has integral
1, and almost all of this is concentrated near x = 0 once n gets large.
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For a concrete example, we could take kn(x) = 2n for |x| < 1/n and
kn(x) = 0 otherwise.

Theorem 1.3. Let kn ∈ L1(T ) be an approximate identity. If f ∈
Lp(T ), 1 ≤ p < ∞, then ‖kn ∗ f − f‖p → 0. Similarly, if f ∈ C(T ),
then (kn ∗ f)(x)→ f(x) uniformly on x ∈ T .

So we now have a very explicit version of the general fact I mentioned
above, in the proof of Theorem 1.2: arbitrary Lp functions can be
approximated by nice functions. Namely, we can fix an approximate
identity kn consisting of such nice functions, and why not go all the
way and take kn ∈ C∞(T ), and then we form kn ∗ f . These functions
are smooth, and they converge to f (in what sense exactly will depend
on the properties of f).

Theorem 1.3 also explains the terminology: an approximate identity
almost acts like a multiplicative identity when convolution products
with it are taken.

I don’t want to give a full proof of Theorem 1.3 here, I will only
briefly discuss the easiest case, when f ∈ C(T ). But you should at
least understand intuitively why kn ∗ f = f ∗ kn is close to f : if you
take another look at the definition (1.4), you’ll see that (f ∗ kn)(eix)
can be thought of as an average of values f(eit), and mostly these
t’s are taken from a small neighborhood of x, because of (1.5). So if
f has some modest regularity (as all L1 functions do, by Lebesgue’s
differentiation theorem), then we may expect this to be close to f(eix).

Let’s now do the formal argument for f ∈ C(T ). We can write

(1.6) (kn ∗ f)(eix)− f(eix) =

∫
T

kn(eit)(f(ei(x−t)− f(eix)) dσ(t)

(since
∫
kn = 1). Now f ∈ C(T ) is uniformly continuous on the

compact space T , so, given ε > 0, we can find a δ > 0 such that
|f(ei(x−t) − f(eix)| < ε for all x, provided that |t| < δ. So the con-
tributions coming from |t| < δ to the integral from (1.6) are (in ab-
solute value) < ε‖kn‖1 ≤ Cε. On the other hand, since f ∈ C(T ) is
bounded (again, because T is compact), the contributions from |t| > δ
are ≤ 2‖f‖∞

∫
|t|>δ |kn| dσ, which goes to zero as n→∞.

The convolution also interacts nicely with the Fourier transform.

Theorem 1.4. Let f, g ∈ L1(T ). Then an(f ∗ g) = an(f)an(g).

Exercise 1.5. Prove this (by an easy direct calculation).

Theorem 1.5 (Uniqueness). Let f, g ∈ L1(T ) and suppose that an(f) =
an(g). Then f = g.
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The interesting aspect of this is that recovery of a function from
its Fourier coefficients will always work (in principle, at least), even
though (1.3) may be inadequate to get the job done.

Proof. By considering f − g, we see that it suffices to prove that f = 0
if an(f) = 0. This is already clear, by Theorem 1.1, if f ∈ L2(T ). In
general, if we only have f ∈ L1, fix an approximate identity with the
additional property kj ∈ L2 (for example, use the rectangular functions
given above) and consider kj ∗ f ∈ L2. By Theorem 1.4, an(kj ∗ f) =
an(kj)an(f) = 0, so kj ∗ f = 0 by what we just discussed. However,
kj ∗ f → f in L1 by Theorem 1.3, so f = 0 as well. �

Corollary 1.6 (Fourier inversion). Let f ∈ L1(T ), and suppose that
an(f) ∈ `1 (that is,

∑
|an| <∞). Then in fact f ∈ C(T ) and f(eix) =∑

n∈Z ane
inx for all x.

It would be more careful to say here that f ∈ L1 is almost everywhere
equal to a continuous function. It is clear that more than this cannot be
true because the Fourier coefficients an(f) are computed by an integral,
so are insensitive to a change of values of f on a null set. Also, I already
stated that we identify functions that agree almost everywhere, so there
should be no real danger of confusion.

Proof. Since `1 ⊆ `2, Theorem 1.1 shows that f ∈ L2 and (1.3) holds
(with convergence in L2). As we already reviewed above, convergence in
L2 implies pointwise convergence almost everywhere on a subsequence,
so

f(eix) = lim
j→∞

Nj∑
n=−Nj

ane
inx

for almost every x. But actually the passage to a subsequence was
unnecessary since the series itself converges by our assumption that
a ∈ `1. (Or we could have applied Carleson’s theorem, but that’s
cracking a nut with a sledgehammer.) Moreover, the limit is uniform
in x, for the same reason, since∣∣∣∣∣f(eix)−

N∑
n=−N

ane
inx

∣∣∣∣∣ ≤ ∑
|n|>N

|an| → 0 (N →∞).

The finite sums are continuous functions of x, so f ∈ C(T ). �

If this proof is read superficially, one could get the impression that
all this could have been done immediately following Theorem 1.1. But
that’s not the case: we do use uniqueness (Theorem 1.5) here, in the
very first step, when we conclude that f ∈ L2 from the fact that a ∈ `2.
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This only works because we now know that the Fourier coefficients
determine the function for a general f ∈ L1. Theorem 1.1 only tells me
that there is a unique f ∈ L2 with given Fourier coefficients an ∈ `2, but
it does not rule out the possibility that there might be other functions
g ∈ L1 \L2 with those same Fourier coefficients. This only follows from
Theorem 1.5.

2. The Poisson kernel

The Poisson kernel is the family of functions Pr ∈ C(T ), 0 ≤ r < 1,
given by

(2.1) Pr(e
ix) =

∞∑
n=−∞

r|n|einx.

The series converges uniformly in x for any given r < 1. In fact, it is
a geometric series (or, more precisely, a sum of two of these, one for
n < 0 and one for n > 0), and we can evaluate it explicitly. We find

(2.2) Pr(e
ix) =

1− r2

1− 2r cosx+ r2
.

Exercise 2.1. Carry out this calculation in more detail.

From the uniform convergence of (2.1) and the orthogonality of the
exponentials we see that

an(Pr) =

∫
T

Pr(e
ix)e−inx dσ = |r|n.

Thus, by Theorem 1.4, an(Pr ∗ f) = |r|nan(f) for any f ∈ L1(T ), and
these exponentially decaying Fourier coefficients satisfy the assump-
tions of Corollary 1.6. Hence

(2.3) (Pr ∗ f)(eix) =
∞∑

n=−∞

an(f)|r|neinx,

and this series converges absolutely and uniformly in x.
On the other hand, Pr is an approximate identity when r → 1−:∫

T

Pr dσ = a0(Pr) = 1,

and also
∫
|Pr| dσ = 1, since Pr ≥ 0. Moreover, if |x| > δ, then cosx is

bounded away from 1, say cos x ≤ 1− η (recall that we can let x vary
over [−π, π), say, so that then x = 0 is the only point in our interval
where cos x = 1). This will guarantee that the denominator of (2.2)
is bounded away from zero, so Pr(e

ix) ≤ C(1 − r2) on |x| > δ, and
this gives us (1.5), with Pr taking the role of kn, and the limit n→∞
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replaced by r → 1−. This was the final requirement on an approximate
identity.

When this is combined with (2.3), we obtain what is usually called a
summation method for Fourier series, that is, a method for recovering
f ∈ L1(T ) from

∑
ane

inx even though this series may well be divergent:
we work with

∑
an|r|neinx instead, which is guaranteed to converge,

and we then also know, from Theorem 1.3, that these modified series
converge to f in L1(T ) as r → 1−. This particular method of assigning
a value to a potentially divergent series is also called Abel summation.
So we can now summarize and say that while the original Fourier series
may not recover the function, due to its possible divergence, its Abel
summed version always will, at least if we interpret things carefully
(the convergence will take place in L1 when we send r → 1−).

If a ∈ `1 and thus the issues the summation method is supposed
to address were absent, then indeed the summation method won’t do
anything: in this case,

lim
r→1−

∞∑
n=−∞

an|r|neinx =
∞∑

n=−∞

ane
inx

for all x.

Exercise 2.2. Prove this.

If we only wanted a summation method for Fourier series, then in
fact the more natural choice would have been Cesaro summation, which
works with the averages (1/N)

∑N−1
n=0 Sn, with Sn =

∑
|k|≤n ake

ikx. But
the Poisson kernels are important for us for another reason: they pro-
vide a link from the theory of Fourier series to complex analysis on
the unit disk D. To make this connection explicit, reorganize r, x into
one complex variable z = reix, z ∈ D. For n ≤ −1, we can write
r|n|einx = z|n|, and thus

(2.4) Pr(e
ix) = 1 +

∞∑
n=1

(zn + zn) = 1 + 2 Re
∞∑
n=1

zn = Re
1 + z

1− z
.

This function (1 + z)/(1− z) is holomorphic on D. As a consequence,
its real part u(z) = Pr(e

ix) is harmonic, that is, u ∈ C2(D) satisfies
Laplace’s equation ∆u = 0, with ∆ = ∂2/∂s2 + ∂2/∂t2, z = s + it
(normally we would write z = x+iy, but this clashes with our previous
use of x as the phase of z in polar coordinates).

Exercise 2.3. Confirm directly, by a brute force calculation, that Pr
from the right-hand side of (2.2) is harmonic, in the sense explained
above. More specifically, form z = reix ∈ D, then express Pr(e

ix) in
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terms of s, t, with z = s+ it, and then verify that P (s, t) is harmonic.
(You are not going to enjoy this, and the exercise is unnecessary from a
strictly logical point of view since we already proved that P is harmonic,
but it will help you gain some confidence with these things.)

Now let’s take another look at Pr ∗ f , with f ∈ L1(T ). I now want
to interpret

(2.5) (Pr ∗ f)(eix) = (f ∗ Pr)(eix) =

∫
T

f(eit)Pr(e
−iteix) dσ(t)

also as a function of z = reix ∈ D. The function z 7→ Pr(e
−iteix) is

still harmonic for any fixed t, as we can see by slightly adapting the
calculation from (2.4). This (strongly) suggests that P ∗ f , thought of
as a function of z = reix ∈ D, is harmonic on D. This impression is
correct, though to prove it formally, we’d have to justify pulling the
Laplacian under the integral sign (it’s not very hard to give a proper
proof, and please try to do it if interested; a slicker proof than the
one sketched can be based on the mean value property of harmonic
functions, if you’re familiar with this). Alternatively, we can obtain
the same conclusion from (2.3). We then use the fact that each of the
summands z 7→ z|n|, z 7→ z|n| is harmonic and that the convergence
is locally uniform, that is, it is uniform on each smaller disk |z| ≤ R,
R < 1. Finally, a uniform limit of harmonic functions is harmonic.

Let me summarize.

Theorem 2.1. Let f ∈ Lp(T ), 1 ≤ p < ∞. Then F (z) = Pr ∗ f is
a harmonic function on D, and fr → f in Lp(T ) as r → 1−, with
fr(e

ix) = F (reix), and also fr(e
ix)→ f(eix) for almost every x.

If f ∈ C(T ), then F (z) = Pr ∗ f is harmonic on D and has a
continuous extension to D, with F (eix) = f(eix).

We discussed (but did not always prove formally) most of this above.
The convergence fr → f in Lp follows from Theorem 1.3 since fr =
Pr ∗ f and Pr is an approximate identity. The pointwise convergence
would need a separate argument, but I don’t want to do this here.

If f ∈ L∞(T ), then we can still obtain f as the pointwise limit
(almost everywhere) of the fr; in fact, this much is obvious since
L∞(T ) ⊆ L1(T ). However, fr need not converge to f in L∞, which
is also clear, since a uniform limit of the continuous functions fr would
be continuous itself, but of course a general f ∈ L∞(T ) need not be
continuous anywhere.

Essentially, we have obtained a rather neat complex analytic rein-
terpretation of Abel summation: Given an f ∈ L1(T ), we associate
with it a harmonic function F on D, which has f as its boundary
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values f(eix) = limr→1− F (reix). Along a circle |z| = r, the function
F (reix) = Pr ∗ f is the modified Fourier series from (2.3).

The Dirichlet problem on the disk is the boundary value problem

(2.6) ∆u = 0, u = f on T ;

more precisely, f ∈ C(T ) is given, and we are looking for a function
u ∈ C(D) that satisfies ∆u = 0 on D and agrees with f on T . The
last part of Theorem 2.1 says that we can solve the Dirichlet problem
explicitly by the Poisson integral u = Pr ∗ f .

The solution to (2.6) is unique, and this follows conveniently from
the maximum principle for harmonic functions: if a harmonic function
u : D → R has a local maximum (or minimum) at some point z0 ∈ D,
then u is constant (and this is a quick consequence of the mean value
property of harmonic functions, which I already alluded to above). So
if u, v both solve (2.6), then w = u − v is harmonic on D and w = 0
on T . Then both Re w and Im w have the same properties, and these
functions must have an extremum on D since they are constant (= 0)
on T , so w is constant. Since w = 0 on T , it follows that w = 0
everywhere, so u = v, as claimed.

It is now natural to ask if all this can be turned around. Namely,
can I start out with a harmonic function F : D → C and then expect
this to have boundary values f(eix) := limr→1− F (reix)? Moreover, if
that works, will then F = Pr ∗ f turn out to be the Poisson integral of
its boundary values?

On reflection, it soon becomes clear that this is too ambitious since
things can easily get out of control as we approach the boundary of
D. For example, F (z) = 1/(1− z) is harmonic (even holomorphic) on
D, but its boundary values f(eix) = 1/(1 − eix) fail to be integrable
near x = 0 (f(eix) ' i/x there), so we are not in the framework of
our theory. Come to think of it, we actually do not obtain arbitrary
harmonic functions as Poisson integrals F = Pr ∗ f . Rather, we have
at least some kind of average control when we approach the boundary
in the sense that if f ∈ Lp(T ), then

‖fr‖p = ‖Pr ∗ f‖p ≤ ‖f‖p, fr(e
ix) = F (reix),

since ‖Pr‖1 = 1. In this setting, everything now works beautifully.

Theorem 2.2. Let 1 < p ≤ ∞. Suppose that F : D → C is harmonic,
and

(2.7) sup
0≤r<1

∫
T

|F (reix)|p dσ(x) <∞.
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Then f(eix) = limr→1− F (reix) exists for almost all x, f ∈ Lp(T ), and
F = Pr ∗ f .

Proof. This proof will depend on some abstract machinery (dual spaces
and the Banach-Alaoglu theorem). Take a look at chapter 4 of my
Functional analysis notes if you want to brush up on this. But the
argument should also make some sense if you don’t pay attention to
the precise inner workings of these steps.

By (2.7), the collection of functions fr(e
ix) = F (reix) ∈ Lp(T ), 0 ≤

r < 1, is bounded in Lp(T ), that is, ‖fr‖p ≤ C, with C independent
of r. We have Lp = (Lq)∗, with 1/p + 1/q = 1, that is, Lp is the dual
space of Lq. Now the Banach-Alaoglu theorem (and the separability
of the spaces involved, if you want to be really careful) implies that we
can select a sequence rn → 1− such that frn → g in weak-∗ sense, for
some g ∈ Lp. More explicitly, this means that

(2.8)

∫
T

h(eit)frn(eit) dσ(t)→
∫
T

h(eit)g(eit) dσ(x)

for every h ∈ Lq (note also that the product of an Lq function with
an Lp function is in L1, by Hölder’s inequality, so everything is well
defined here).

Now let’s look at G(z) = Pr ∗ g. The (shifted) Poisson kernel
Pr(e

i(x−t)), as a function of eit, for fixed r, x, is an admissible h in
(2.8). In fact, Pr ∈ C(T ), so certainly Pr ∈ Lq, as required. Thus, by
(2.8),

G(z) = lim
n→∞

∫
T

Pr(e
i(x−t))frn(eit) dσ(t).

On the right-hand side, we are looking at Pr ∗frn . Now frn ∈ C(T ), so,
as we discussed, this Poisson integral solves the Dirichlet problem on
D with boundary values frn . But obviously the unique solution to this
problem is F (rnz): this is still harmonic, by elementary calculus, and
has the right boundary values on |z| = 1. Thus G(z) = limF (rnz) =
F (z); recall that F , being harmonic, is continuous on D.

We have shown that F = Pr∗g, for some g ∈ Lp. Now the rest follows
from Theorem 2.1: the function g can be recovered as the boundary
value of its Poisson integral, which is F , so g(x) = limr→1− F (reix),
with convergence both in Lp (if p < ∞) and pointwise almost every-
where. �

For p = 1, the argument does not work in literally this form because
L1(T ) is not a dual space (that is, there is no Banach space X such that
X∗ is isometrically isomorphic to L1(T )). However, a slight adjustment
in the set-up will salvage matters anyway. Namely, L1(T ) is contained
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as a closed subspace in M(T ), the space of complex Borel measures
on T , if we view an f ∈ L1(T ) as the measure f(eix) dσ(x). Recall
that a complex measure assigns a complex number µ(B) to a Borel set
B ⊆ T . Its total variation |µ| is a finite positive measure on T , and
dµ(x) = eiα(x) d|µ|(x) for some function α. The norm of a µ ∈ M(T )
is defined as ‖µ‖ = |µ|(T ).

Everything we discussed so far could have been done, more generally,
on M(T ). The Fourier coefficients of a µ ∈M(T ) are defined as

an(µ) =

∫
T

e−inx dµ(x).

We still have ‖a‖∞ ≤ ‖µ‖, as in Theorem 1.2, but the Fourier coeffi-
cients of a measure need not go to zero. For example, if µ = δ0 is the
point mass at x = 0, then an = 1.

Theorem 1.5 also holds for measures, with essentially the same proof
as before, so a measure can be uniquely reconstructed (in principle, that
is) from its Fourier coefficients. The Poisson integral of a µ ∈M(T ) is
defined, as expected, as

(2.9) (Pr ∗ µ)(eix) =

∫
T

Pr(e
i(x−t)) dµ(t).

This is still a harmonic function of z = reix, and it satisfies (2.7) for
p = 1, as we can confirm by integrating (2.9) and changing the order
of integration.

This extension of the theory to measures is what we need to make the
argument from the proof of Theorem 2.2 work for p = 1 also because,
unlike L1(T ), the space M(T ) is a dual space. More precisely, M(T ) =
C(T )∗, and this (major) result is usually called the Riesz representation
theorem.

Theorem 2.3. Suppose that F : D → C is harmonic, and

(2.10) sup
0≤r<1

∫
T

|F (reix)| dσ(x) <∞.

Then there is a unique µ ∈M(T ) such that F = Pr ∗µ. We can obtain
this measure as the weak-∗ limit dµ(x) = limr→1− F (reix) dσ(x). More
explicitly, ∫

T

g(eix) dµ(x) = lim
r→1−

∫
T

g(eix)F (reix) dσ(x)

for all g ∈ C(T ).
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Sketch of proof. With the above preparations in place, we can now re-
peat the argument from the proof of Theorem 2.2. Consider the com-
plex measures dµr(x) = F (reix) dσ(x). By (2.10), this collection is
bounded in M(T ), so will converge to a limit µ ∈ M(T ), in weak-∗
sense, along a suitable sequence rn → 1−. This means that∫

T

g(eit)F (rne
it) dσ(t)→

∫
T

g(eit) dµ(t)

for all g ∈ C(T ). In particular, we can apply this to shifted Poisson
kernels g = Pr(e

i(x−t)), and then we see as above that F = Pr ∗ µ. By
the (undiscussed, here) measure analog of Theorem 2.1, we can then
obtain dµ = lim fr dσ as the weak-∗ limit of its Poisson integral (no
subsequence needed), and this also shows that µ is unique. �

It can also be shown that f(eix) := limr→1− F (reix) exists for almost
every x in the situation of Theorem 2.3, but this pointwise limit will
not, in general, recover the whole measure µ. Rather, it will only give
us its absolutely continuous part f dσ. To recover the full measure, the
limit must be taken in weak-∗ sense.

Let’s look at this in a concrete example. Let’s again take µ = δ0,
the point mass at x = 0 (or, equivalently, at eix = 1 ∈ T ). Write
F (z) = Pr ∗ µ = Pr(e

ix); compare (2.9). Now Pr(e
ix) → 0 as r → 1−

for x 6= 0, as we can see for example from (2.2). Thus the pointwise
limit of F (reix) is zero almost everywhere. We only recover the measure
µ = δ0 if we take the weak-∗ limit (Pr(e

ix) will be small away from
x = 0, but close to this point it will be large, in such a way that the
integral stays equal to 1 for all r < 1).

3. Hp spaces: two definitions

We are now ready for our main topic.

Definition 3.1. Let 1 ≤ p ≤ ∞. We say that f ∈ Hp = Hp(T ) if
f ∈ Lp(T ) and an(f) = 0 for n < 0.

So Hp ⊆ Lp, and in fact Hp is a closed subspace of Lp. This follows
because if fn → f in Lp, then also fn → f in L1 ⊇ Lp, and this in turn
implies that aj(fn) → aj(f) for all j ∈ Z, by the (trivial) inequality
from Theorem 1.2.

Exercise 3.1. Show more explicitly that convergence in Lp implies con-
vergence in L1.

This definition of the Hp spaces or Hardy spaces is the most conve-
nient one for us, but it is not the one usually given. Rather, one defines
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Hp = Hp(D) as the space of holomorphic functions F : D → C that
satisfy

(3.1) sup
0≤r<1

‖fr‖p <∞, fr(e
ix) = F (reix).

This latter condition looks familiar, of course; compare (2.7), (2.10).
The two definitions are equivalent, but clearly this claim needs some

elaboration since the two versions don’t even deal with the same kind
of object: in Definition 3.1, our functions are defined on T , while the
second version is about functions on D. However, the material of the
previous section indicates how to go back and forth between these. The
easier direction is the one where we start out with an f ∈ Hp(T ). We
then form its Poisson integral

F (z) = (Pr ∗ f)(eix), z = reix ∈ D.

As we discussed in Section 2, we have the alternative formula F (z) =∑
an(f)r|n|einx. We are currently assuming that an(f) = 0 for n < 0,

so the sum is only over n ≥ 0, and thus

F (z) =
∞∑
n=0

anz
n, z ∈ D.

This power series converges on D, as we knew from the beginning, but
can also confirm one more time directly since an is bounded, so the
radius of convergence is at least 1. So F is holomorphic on D, and
thus F ∈ Hp(D) since (3.1) holds for any Poisson integral F = Pr ∗ f
with f ∈ Lp, as we discussed in Section 2. So, to summarize this step,
any f ∈ Hp(T ) is naturally associated with an F ∈ Hp(D), given by
F = Pr ∗ f .

Conversely, assume now that an F ∈ Hp(D) is given. We want to
take the above steps in reverse, so come up with an f ∈ Hp(T ) such that
F = Pr ∗ f . A holomorphic function is harmonic (but not conversely,
in general), so Theorem 2.2 tells us that this representation will work
for 1 < p ≤ ∞, if we take f(eix) = limr→1− F (reix); this limit will exist
for almost every x. We also have uniqueness in the sense that only this
f will give us F = Pr ∗ f as a Poisson integral. Moreover, f ∈ Lp(T ).
Of course, we need more than that here: we want f ∈ Hp(T ), that is,
we must show that, in addition, an(f) = 0 for n < 0. We can argue as
above, when we showed that Hp is closed, and use the convergence in
L1 to conclude that

an(f) = lim
r→1−

an(Pr ∗ f).
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However, the Fourier coefficients of this holomorphic function F =
Pr ∗ f are zero for n < 0 because they can be interpreted as a complex
line integral

an =

∫
T

F (reix)e−inx dσ(x) =
1

2πi

∫
T

F (rz)z−n−1 dz,

which equals zero, by Cauchy’s theorem, since the integrand is holo-
morphic (recall that −n− 1 ≥ 0).

Exercise 3.2. Give an alternative proof that an(f) = 0 for n < 0, as
follows: recall that

F (z) = Pr ∗ f =
∑
n≥0

anz
n +

∑
n≤−1

anz
|n|,

and then show that this expression is holomorphic only if an = 0 for
n < 0.

So for p > 1, we have set up the promised one-to-one correspondence
between Hp(T ) and Hp(D). We pass from one realization of this space
to the other with the help of the operations take the Poisson integral
and take the boundary values. However, there seems to be a problem
for p = 1. Everything works smoothly if f ∈ H1(T ) is given, as we
discussed: we obtain the associated F ∈ H1(D) as F = Pr∗f . However,
if we start out with an F ∈ H1(D) and refer to Theorem 2.3 to write
this as a Poisson integral, then this result does not guarantee that
F = Pr ∗ f , with f(eix) = limr→1− F (reix) being the boundary value
almost everywhere of F (which we do know exists). Rather, F = Pr ∗µ
for a measure µ, and f dσ is only its absolutely continuous part.

While this is indeed the situation for harmonic functions F : D → C,
for holomorphic functions F ∈ Hp(D) this discrepancy between p = 1
and p > 1 goes away, and p = 1 is no longer special. This beautiful
result is our first major theorem on Hp spaces.

Theorem 3.2 (F. and M. Riesz). Suppose that F ∈ H1(D). Then
f(eix) = limr→1− F (reix) satisfies f ∈ H1(T ) and F = Pr ∗ f .

This can be rephrased as a statement about measures, which is
equally satisfying.

Theorem 3.3. Suppose that µ ∈M(T ), an(µ) = 0 for all n < 0. Then
dµ = f dσ, for some f ∈ H1(T ).

Even the less precise statement that dµ = f dσ for some f ∈ L1(T ),
that is, µ is an absolutely continuous measure, is very interesting. This
is a smoothness property of sorts, and one would normally think that
this must have something to do with the decay of the Fourier coefficients
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as n→ ±∞, but the theorem obtains this conclusion from information
on just one half of the Fourier coefficients.

Exercise 3.3. Explain in more detail how Theorems 3.2 and 3.3 imply
each other. (That should also become clearer later on, once we discuss
the proof of Theorem 3.3.)

With this correspondence between Hp(D) and Hp(T ) now set up
in all cases, we will usually not distinguish between the two versions
and also often simply write Hp for this space, with the understanding
that its elements can be thought of either as functions on T or as
(holomorphic) functions on D, and we will indeed switch back and
forth between the two interpretations quite routinely. However, we
will continue to write Hp(D) or Hp(T ) if the distinction matters and
we want to emphasize it.

The spaces Hp(D) are particularly easy to describe for p = 2,∞:
H∞(D) is simply the space of bounded holomorphic functions F : D →
C, and H2(D) is the space of all functions

(3.2) F (z) =
∞∑
n=0

anz
n,

with an ∈ `2. (Of course, the power series representation (3.2) is valid
for F ∈ Hp(D) for any p, but if p 6= 2, then we don’t have a good
description of the coefficient sequences an that occur.)

We will return to Theorem 3.3 later. For now, we’ll look at a rather
different topic.

4. Invariant subspaces

If A : H → H is a bounded linear operator on a Hilbert space
H, then a closed subspace M ⊆ H is called an invariant subspace if
AM ⊆ M , that is, Ax ∈ M for all x ∈ M . For example, if A is a
matrix, acting on H = Cn, then any subspace spanned by some (but
not necessarily all) of the eigenvectors of A is an invariant subspace. In
particular, if H = Cn is finite-dimensional, then non-trivial invariant
subspaces always exist. Here, we call M non-trivial if M 6= 0, H.
For infinite-dimensional separable Hilbert spaces such as H = L2(T ),
H = `2 the corresponding question does every bounded operator have a
non-trivial invariant subspace? has been a long-standing and famous
open problem.

There is one easy general procedure to produce invariant subspaces.
Namely, start out with an arbitrary f ∈ H, keep applying the operator,
that is, form f, Af,A2f, . . ., and then take the closed linear span of this
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sequence. We’ll denote this subspace by Mf ⊆ H (it obviously also
depends on A).

Exercise 4.1. Prove more explicitly that Mf is an invariant subspace.
(This is purely a Functional analysis exercise.)

Of course, this does not solve the invariant subspace problem because
it’s completely possible that Mf = H.

For H = H2(T ) or H = L2(T ), the operator A of multiplication by
eix, (Af)(eix) = eixf(eix) is obviously bounded; in fact |(Af)(eix)| =
|f(eix)|, so ‖Af‖2 = ‖f‖2, that is, A is an isometry (preserves norms).

Exercise 4.2. Show that if the realization H2(D) of H2 is used instead,
then (unsurprisingly) (Af)(z) = zf(z).

The invariant subspaces of A on H2 can be determined; this is a
famous result of Beurling. We can also find the additional invariant
subspaces of A on the larger space L2, which is an easier result (cer-
tainly from an abstract, spectral theoretic point of view, since A is
unitary on L2, but not on H2). We’ll combine the two parts here:

Theorem 4.1. Each invariant subspace M of A : L2(T )→ L2(T ) is of
one of two types. Either M = L2(B) for some (Borel) subset B ⊆ T , or
M = qH2(T ), for some q ∈ L∞(T ) with |q(eix)| = 1 almost everywhere
on T .

Here we of course think of L2(B) ⊆ L2(T ) as a subspace of L2(T ),
by identifying an f ∈ L2(B) with f0 ∈ L2(T ), f0 = f on B, f0 = 0 on
T \B.

Exercise 4.3. Prove that any space of the type M = L2(B) or M = qH2

is invariant under A (this easy fact is of course more or less assumed
in the formulation of the theorem).

The second type of space, qH2 is the same as Mq = L(q, zq, z2q, . . .),
as defined above. To prove this remark, observe first that qH2 ⊆ L2

is a closed subspace: if fn ∈ H2, qfn → g ∈ L2, then also fn → g/q
in L2, since |q| = 1. But H2 ⊆ L2 is closed, so g/q ∈ H2 and thus
g ∈ qH2, as claimed.

Now 1, z, z2, . . . ∈ H2, and thus Mq ⊆ qH2 (and for this step, I use
that qH2 is closed). Conversely, any f(z) =

∑∞
n=0 anz

n ∈ H2 is the

norm limit f = limSN , SN =
∑N

n=0 anz
n, of finite linear combinations

of the zn, n ≥ 0, and then also qSN → qf in L2, by the same argument
as above, since |q| = 1. It follows that qH2 ⊆Mq.

We have

(4.1) qH2 ⊆ H2 if and only if q ∈ H2,
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if q is as in Theorem 4.1, that is, |q| = 1 on T . Clearly, the condition
q ∈ H2 is necessary since 1 ∈ H2, so q ∈ qH2. The converse follows
from the following general fact, which we’ll use repeatedly in the sequel.

Lemma 4.2. Suppose that f, g ∈ H2. Then fg ∈ H1.

This formulation almost slightly obscures what the lemma is about.
Recall that an f ∈ Lp is in Hp(T ) if and only if its negative Fourier
coefficients are all zero. The lemma really says that the product of
two such functions with no negative Fourier coefficients has the same
property.

Exercise 4.4. Prove the following precise version of this remark, assum-
ing Lemma 4.2: if f, g ∈ H2(T ) and fg ∈ Lp(T ) for some 1 ≤ p ≤ ∞,
then fg ∈ Hp(T ).

This can look completely trivial if we are just a bit superficial: multi-
plying

∑
n≥0 ane

inx and
∑

n≥0 bne
inx (formally) produces another such

series with no n < 0 terms. But we mustn’t forget that these Fourier
series are not guaranteed to converge (at least, not for L1 functions),
so a more solid argument should be given.

Proof of Lemma 4.2. First of all, observe that if fn → f , gn → g in
L2, then fngn → fg in L1. This follows from the Cauchy-Schwarz
inequality (which will also make sure that these products are in L1):∫

|fngn − fg| ≤
∫
|fn − f | |gn|+

∫
|f | |gn − g|

≤ ‖fn − f‖2‖gn‖2 + ‖f‖2‖gn − g‖2 → 0

As we observed earlier, f, g ∈ H2 can be approximated in norm by
(trigonometric) polynomials Pk → f , Qk → g. In fact, all we need
to do is cut off the Fourier (or Taylor) series f =

∑
n≥0 anz

n. Now
clearly the product of two such finite sums is another such (finite) sum
with no n < 0 terms, so an(PkQk) = 0 for n < 0. These Fourier
coefficients converge to an(fg) as k → ∞, by our earlier observation
that PkQk → fg in L1 and Theorem 1.2. �

Now let’s return to our discussion of (4.1). If q ∈ H2, |q| = 1, and
f ∈ H2, then clearly qf ∈ L2, and now Lemma 4.2 in the version of
Exercise 4.4 shows that qf ∈ H2.

Such a function q ∈ H2, |q| = 1, actually lies in H∞, by the argument
from Exercise 4.4 again: an(q) = 0 for n < 0 since q ∈ H2, and
obviously q ∈ L∞(T ), hence q ∈ H∞(T ).

Recall that the maximum principle for holomorphic functions says
that if f is holomorphic on a neighborhood of a compact set K, then
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the maximum of |f | on K can only be assumed on the boundary of K,
unless f is constant.

Exercise 4.5. Deduce from the maximum principle that if F ∈ H∞(D)
with boundary values f , then

sup
z∈D
|F (z)| = ‖f‖L∞(T );

please pay attention to the small details here: the right-hand side is the
essential supremum of the boundary function f(eix) = limr→1− F (reix),
and we know that this limit exists almost everywhere.

Theorem 4.1 does not bring us any closer to a resolution of the invari-
ant subspace problem, but this context explains some of the excitement
surrounding it. Also, results like this one have inspired the hope that
complex analytic methods may be relevant to the invariant subspace
problem (though the proof we are going to discuss will actually use
hardly any complex analysis at all).

Exercise 4.6. Consider the unitary map U : L2(T )→ `2(Z) that sends
an f ∈ L2 to its Fourier coefficients, so (Uf)n = an(f) (see also The-
orem 1.1). Show that S = UAU∗ (and U∗ = U−1 for a unitary oper-
ator), that is, the operator A realized on `2(Z), is the shift operator
(Sa)n = an−1. So Theorem 4.1 also determines the invariant subspaces
of the shift operator. Also, what is UH2?

Proof of Theorem 4.1. Let M ⊆ L2(T ) be an invariant subspace, so
eixM ⊆ M . Let’s first consider the case when also e−ixM ⊆ M . By
repeatedly applying these properties, we see that then also einxM ⊆M
for any n ∈ Z.

Now take any f ∈ M , g ∈ M⊥ (that is, 〈g,m〉 = 0 for all m ∈ M).
Since then also feinx ∈M , as we just observed, we have

0 = 〈g, feinx〉 =

∫
T

gfeinx dσ.

In other words, all Fourier coefficients of the function gf ∈ L1(T ) are
equal to zero. Hence gf = 0, by Theorem 1.5.

Consider now (Borel) sets B ⊆ T with the property that there is
an f ∈ M with f 6= 0 almost everywhere on B. Let’s denote the
collection of these sets by A, and define m = supB∈A σ(B). Pick a
sequence Bn ∈ A with σ(Bn) → m, and let B =

⋃
n≥1Bn. Then

σ(B) ≥ m (prove this in detail perhaps as an exercise in basic measure
theory). If now g ∈ M⊥ is arbitrary, then g = 0 almost everywhere
on Bn, by what we showed in the previous paragraph (since there is
an fn ∈ M with fn 6= 0 almost everywhere on Bn, but we must also
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have gfn = 0). Thus in fact g = 0 almost everywhere on B, and this
means that 〈g, f〉 = 0 for any f ∈ L2(B). Since g ∈M⊥ was arbitrary,
this says that any f ∈ L2(B) belongs to M⊥⊥ = M . This last equality
follows because M is a closed subspace. So L2(B) ⊆M .

To establish the reverse inclusion, let f ∈M be arbitrary. Note that
then also f + g ∈ M for any g ∈ L2(B). So if we had f 6= 0 on a
positive measure subset of T \B, then we would also obtain a function
h ∈ M with h 6= 0 on a set C ⊇ B, and σ(C) > σ(B) ≥ m (just take
something like g = χN above, where N = {eix ∈ B : f(eix) = 0}). This
contradicts the definition of m. It follows that f = 0 on Bc for any
f ∈M , and thus M = L2(B).

Now let’s move on to the other case, when e−ixM 6⊆ M . Then also
eixM ( M , and since both sets are closed subspaces, we can find a
q ∈ M , q 6= 0, q ⊥ eixM . We can also demand here that ‖q‖2 = 1.
The subspace M is invariant and q ∈ M , so qeinx ∈ M for n ≥ 0 and
qeinx ∈ eixM for n ≥ 1. Thus, for n ≥ 1, we have

0 = 〈q, qeinx〉 =

∫
T

|q|2einx dσ.

By taking complex conjugates, we obtain this condition also for n ≤
−1. In other words, the only Fourier coefficient of the function |q|2 ∈
L1(T ) that can be non-zero is a0(|q|2), and this means, by uniqueness,
that |q|2 is a constant function. Since ‖q‖ = 1, we have |q| = 1.

We know that the exponentials einx, n ∈ Z, form an ONB of L2(T );
compare Theorem 1.1. This implies that {q(eix)einx : n ∈ Z} is another
ONB: these functions are still orthonormal because when we work out
their scalar products, we only pick up an additional factor |q|2 = 1,
and their closed linear span is still all of L2(T ) because if f ∈ L2(T )
is given, then also f/q ∈ L2(T ), and then we expand f/q =

∑
ane

inx

into exponentials to obtain an expansion of f in terms of the functions
qeinx (and this second part of the argument also depends on the fact
that |q| = 1).

Now qeinx ∈ M for n ≥ 0, and if n < 0, then qeinx ∈ M⊥. To check
this second claim, take an arbitrary f ∈M and compute

〈qeinx, f〉 =

∫
T

qe−inxf dσ = 〈q, e−inxf〉 = 0,

since −n ≥ 1, so e−inxf ∈ eixM , and we took q ⊥ eixM .
It follows that M = L(qeinx : n ≥ 0).

Exercise 4.7. Provide more details for this step.

So, if we use the notation introduced above, then M = Mq, with
|q| = 1 on T , and we established earlier that this space equals qH2. �
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We have also seen that these two types of invariant subspaces don’t
overlap, that is, if M = L2(B), then there is no q, |q| = 1, such
that also M = qH2, and vice versa. Indeed, if f ∈ L2(B), then also
e−inxf ∈ L2(B) for arbitrarily large n, but this will not hold for an
f ∈ qH2, f 6= 0: in that case f = qg, g ∈ H2, so g has non-zero Fourier
coefficients only for non-negative integers, but of course multiplying by
e−inx will eventually produce Fourier coefficients at negative integers if
g 6= 0. Or, to state this more succinctly, an invariant subspace either
is invariant under multiplication by e−ix also, or it isn’t, but not both.

Theorem 4.3. Let f ∈ H2(T ). If f = 0 on a set of positive measure,
then f ≡ 0.

This is also valid for f ∈ H1, as we will prove later. The statement
can be viewed as a version of the identity theorem for holomorphic
functions, which says that if F : D → C is holomorphic and F = 0 on
a set with an accumulation point in D, then F ≡ 0. Our functions are
not holomorphic on T , but they are boundary values of holomorphic
(on D) functions, and we still have a statement saying that the function
cannot be zero very frequently without being zero identically.

Proof. Let f ∈ H2(T ), f 6≡ 0, and consider Mf = L(f, zf, z2f, . . .). As
we discussed earlier, Mf is an invariant subspace, and Mf ⊆ H2. The
arguments we just discussed, in the paragraph preceding the theorem,
also show that such a subspace cannot be of the type L2(B). Thus
Mf = qH2 for some q with |q| = 1, by Theorem 4.1. In particular,
q ∈Mf , and this function does not vanish anywhere. If we had f = 0 on
some set B ⊆ T , σ(B) > 0, then the same would be true for all g ∈Mf

(for example because a norm convergent sequence also converges almost
everywhere along a subsequence). So this is not possible here. �

5. Factorization and the F. and M. Riesz theorem

Definition 5.1. We call f ∈ H2(T ) an inner function if |f | = 1 almost
everywhere and an outer function if Mf = H2.

Note that the functions q from Theorem 4.1 are not necessarily inner
functions because Definition 5.1 also insists that q ∈ H2. Recall also
that for any f ∈ H2, outer or not, we have Mf ⊆ H2.

Theorem 5.2. Let f ∈ H2(T ), f 6≡ 0. Then we can factor f = qg,
with q inner and g outer. This factorization is essentially unique in
the sense that if also f = ph with p inner, h outer, then p = eiαq,
h = e−iαg for some α ∈ R.
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Proof. Consider the invariant subspace Mf . Since Mf ⊆ H2, this must
be of the type Mf = qH2 for some q with |q| = 1. In fact, q = q · 1 ∈
Mf ⊆ H2, so q is inner. Since f ∈ Mf = qH2, we can write f = qg
for some g ∈ H2. We want to show that g is outer, so let’s look at Mg.
We have

Mg = Mf/q = q−1Mf = q−1(qH2) = H2,

as desired.

Exercise 5.1. Explain the second equality in more detail. Use the def-
inition of Mh and the fact that |q| = 1.

If also f = ph, with p inner, h outer, then qg = ph, so (q/p)g = h is
outer, and we see in the same way that

H2 = M(q/p)g = (q/p)Mg = (q/p)H2.

Hence q/p = (q/p) · 1 ∈ H2. In the same way, we can show that
p/q ∈ H2. Now |p| = |q| = 1, so 1/p = p and 1/q = q, so we can slightly
rephrase and say that pq, pq ∈ H2(T ). These two functions will also be
complex conjugates of one another if considered as functions on D, so if
we pass to this picture, then we are dealing with an S = PQ ∈ H2(D)
with the property that S ∈ H2(D) also. This follows because we pass
to S by taking the Poisson integral S = Pr ∗ s, and since the Poisson
kernel is real, we have Pr ∗ s = Pr ∗ s.

However, it is not possible for a function and its complex conjugate
to be holomorphic simultaneously unless the function is constant. Thus
p/q = c, and of course this constant c = eiα must be of absolute value
1 here. �

Exercise 5.2. Brush up your complex analysis if needed and give a
proof of this fact that we just used: if both F : D → C and F are
holomorphic, then F ≡ c. Suggestion: Consider F ± F and apply the
open mapping theorem.

Exercise 5.3. In the situation of Theorem 5.2, let F,Q,G ∈ H2(D) be
the associated functions on D. Show that then also F (z) = Q(z)G(z)
for all z ∈ D.

Such a factorization also works on H1. Of course, something must be
modified here since the products qg, q inner, g outer, give us exactly
H2, as we just proved, and H1 ) H2. The definition of an inner
function doesn’t seem to be tied to specifically H2 very closely, and in
fact q ∈ H∞ if q is inner, so if we want to tamper with Definition 5.1,
we’d probably have to modify the definition of outer functions. That
can be done, but an easier workaround is more convenient for us here.
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Theorem 5.3. Let f ∈ H1(T ), f 6≡ 0. Then we can factor f = qg2,
with q inner, g outer.

At least in hindsight, the appearance of the extra square is quite
plausible. H1 functions are in L1(T ), and the L1 functions are exactly
the squares of the L2 functions.

As an immediate payoff, we obtain the promised more general version
of Theorem 4.3 from this.

Corollary 5.4. Let f ∈ H1(T ), f 6≡ 0. Then f 6= 0 almost everywhere
on T .

Proof. Write f = qg2, as in Theorem 5.3. Since |q| = 1, if we had
f = 0 on a positive measure set, then also g = 0 on this set, so g ≡ 0
by Theorem 4.3 and thus also f ≡ 0. �

Proof of Theorem 5.3. Let f ∈ H1, f 6≡ 0. Define w = |f |1/2 ∈ L2(T ),
and write f = p|f | = pw2, with |p| = 1 on T . Since f ∈ H1, we have

0 = a−n(f) =

∫
T

feinx dσ =

∫
T

(pw)(weinx) dσ

for all n ≥ 1. In other words, pw ⊥ weinx. These functions weinx,
n ≥ 1, span the invariant subspace Mweix , so we have shown that pw
lies in the orthogonal complement of this space. This rules out the
scenario where Mweix = L2(B) because then pw would have to be zero
(almost everywhere) on B while weix = 0 on Bc, so w ≡ 0 and then
also f ≡ 0, contrary to our assumption.

So we conclude that Mweix = q0H
2. In particular, weix = q0g for

some g ∈ H2, or we can say that w = qg, with q = q0e
−ix, |q| = 1. In

fact,

Mg = Mw/q = q−1Mw = q−1e−ixMweix = (q0/q)e
−ixH2 = H2,

so g is outer. We now have the presentation f = pw2 = pq2g2, so we
can finish the proof by showing that pq2 is inner. We of course already
know that |pq2| = 1, so we must show that pq2 ∈ H2.

The condition that g is outer means, more explicitly, that any h ∈ H2

can be approximated, in H2, by functions of the form g
∑N

n=0 ane
inx.

Since 1 ∈ H2, we can, in particular, find such finite sums Pn (P as
in polynomial, because this is what it is if thought of as a function
of z ∈ D) such that ‖gPn − 1‖2 → 0. Then, by the Cauchy-Schwarz
inequality,

‖fPn − pq2g‖1 = ‖pq2g(gPn − 1)‖1 ≤ ‖pq2g‖2‖gPn − 1‖2
= ‖g‖2‖gPn − 1‖2 → 0.
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Moreover, fPn ∈ H1 because this function is a finite linear combination
of functions of the form feinx, with n ≥ 0, which are in H1(T ) (multi-
plying by einx, n ≥ 0, shifts the Fourier coefficients to the right, so does
not produce Fourier coefficients for negative n). Since H1 is closed in
L1, it follows that pq2g ∈ H1. But we also know that pq2g ∈ L2, so
in fact pq2g ∈ H2. Thus also pq2gPn ∈ H2 for each n, by the same
argument that we just gave for fPn. Finally,

‖pq2gPn − pq2‖2 = ‖pq2(gPn − 1)‖2 = ‖gPn − 1‖2 → 0,

so pq2 ∈ H2(T ) as well, as we wished to show. �

Theorem 5.5. Let F ∈ H2(D) be an outer function. Then F (z) 6= 0
for all z ∈ D.

Proof. The map H2 → C, F 7→ F (z), is of the form F (z) = (Pr ∗
f)(eix) = 〈Pr(ei(x−t)), f〉 and thus is a continuous linear functional on
H2 for any fixed z ∈ D.

Any G ∈ Mf is a norm limit of linear combinations of functions
znF (z), n ≥ 0, so if we had F (z0) = 0 for some z0 ∈ D, then G(z0) = 0
for all G ∈ Mf . This is clearly impossible when F is outer because
then Mf = H2, and H2 contains functions that do not vanish at z0
(such as G = 1). �

We are now finally ready for the proof of the theorem of F. and
M. Riesz. We’ll prove it in the version of Theorem 3.3. If we have an
F ∈ H1(D), as in Theorem 3.2, then F = Pr ∗ µ =

∑
n∈Z an(µ)r|n|einx,

by Theorem 2.3, and the assumption that F is a holomorphic function
of z = reix will now imply that an(µ) = 0 for all n < 0. Then Theorem
3.3 will show that F = Pr ∗ f for some f ∈ H1(T ), but then we also
know that we can obtain f as the boundary value of its Poisson integral,
and Theorem 3.2 follows.

Proof of Theorem 3.3. Consider the holomorphic function

(5.1) F (z) = (Pr ∗ µ)(eix) =
∞∑
n=0

an(µ)zn, z = reix ∈ D.

Since
∫
T
|Pr| dσ = 1, we have

(5.2)

∫
T

|F (reix)| dσ(x) ≤ |µ|(T ) = ‖µ‖,

so F ∈ H1(D). As a first preparatory step, I want to establish a
factorization similar to Theorem 5.3 for such an F . More precisely, we
will prove that

(5.3) F (z) = Q(z)G2(z),
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with Q,G ∈ H2(D), |Q| ≤ 1. This we will do by a limiting procedure.
For fixed r < 1, we have F (rz) ∈ H2(D) (in fact, we have more,
the function is continuous, but this will be enough for our purposes).
So fr = qrhr, with qr ∈ H2(T ) inner, hr ∈ H2(T ) outer, and here I
write fr(z) = F (rz), as usual, for the boundary values of the function
F (rz). The corresponding function Hr ∈ H2(D) has no zeros on D,
by Theorem 5.5, and thus we may take a holomorphic square root. In
other words, we can write Hr = G2

r, with Gr : D → C holomorphic.
Here ‖gr‖22 = ‖hr‖1 = ‖fr‖1 ≤ C, by (5.2).

Now we use one more time the functional analytic machinery from
the proof of Theorem 2.2. On a suitable sequence, grn will converge
weakly in L2(T ) to a limit g ∈ L2(T ). More explicitly, this means that

(5.4)

∫
T

kgrn dσ →
∫
T

kg dσ

for all k ∈ L2(T ). Since a closed subspace is also weakly closed, we in
fact have g ∈ H2(T ).

Exercise 5.4. Give a proof of this fact if you want to. So let M ⊆ H be
a closed subspace of a Hilbert space H, let xn ∈ M and suppose that
〈y, xn〉 → 〈y, x〉 for all y ∈ H, for some x ∈ H. Show that then x ∈M .
Suggestion: What can you say about 〈y, x〉 for y ∈M⊥?

Since the Poisson kernel is a possible choice of k in (5.4), we also
have pointwise convergence Grn(z) → G(z) at each z ∈ D for the
corresponding functions Grn , G ∈ H2(D).

Now look at what happens if we send r → 1− along the sequence
rn in F (rz) = Qr(z)Gr(z)2. Obviously, F (rz) → F (z). This shows,
first of all, that G ≡ 0 is not possible, and then we deduce that Qrn(z)
converges also, at least away from the zeros of G, to Q := F/G2. This
function is meromorphic, but we also know that |Qr| ≤ 1, so |Q| ≤ 1,
and thus Q is in fact holomorphic, or, to say the same thing slightly
differently, Q ∈ H∞(D). We have now proved (5.3).

Let’s now focus on the boundary values f, q, g. We have qg ∈ H2(T ),
by Lemma 4.2 and Exercise 4.4, and this in turn implies that f = qg·g ∈
H1(T ), by the same result. So, to summarize, we have now shown that
the F from (5.4) (which is the general function F ∈ H1(D), by our
discussion preceding the proof) has boundary values f ∈ H1(T ).

These boundary values f(eix) = limr→1− F (reix) are approached not
just pointwise, but also in L1(T ). This follows because G ∈ H2(D) is
the Poisson integral G = Pr ∗ g of its boundary values g ∈ H2(T ), so
G(reix)→ g in L2(T ) by Theorem 1.3. Moreover, |Q| ≤ 1, so, writing
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fr(e
ix) = F (reix), as usual, we indeed have

‖fr − f‖1 ≤ ‖g2r − g2‖1 = ‖(gr + g)(gr − g)‖1
≤ (‖gr‖2 + ‖g‖2) ‖gr − g‖2 → 0.

Now fs ∈ C(T ) is well behaved for any s < 1, so F (sz) = Pr ∗ fs,
z = reix, certainly is the Poisson integral of its boundary values, and
we can now send s→ 1− to obtain the desired conclusion that F (z) =
Pr ∗ f , with f ∈ H1(T ) being the boundary value of F .

Exercise 5.5. Give a more detailed argument for the fact I just used,
namely that (Pr ∗ hn)(eix)→ (Pr ∗ h)(eix) if hn → h in L1(T ). This is
easy, you just need to make sure that you won’t get confused by the
notation. In particular, note that r, eix are held fixed here.

Or, to state this in exactly the same form as in Theorem 3.3, we
can say that dµ = f dσ because also F = Pr ∗ µ and the measure in a
Poisson representation is unique. �

6. Outer functions

Let F ∈ H∞(D) ⊆ H2(D) be a bounded outer function. Let’s in
fact assume that |F | ≤ 1, which we can of course always achieve by
multiplying F by a constant. F has no zeros on D, by Theorem 5.5,
so we can take a holomorphic logarithm logF (z). This function is not
uniquely determined: we can add multiples of 2πi. We simply fix one
such choice.

For each r < 1, we then have

(6.1) log |F (0)| =
∫
T

log |F (reix)| dσ(x).

Since P0 = 1, this is the Poisson representation formula, at z = 0, for
the bounded harmonic function log |F (rz)| = Re logF (rz). Alterna-
tively, we can view (6.1) as the mean value property for log |F (rz)|.

Now log |F | ≤ 0 since |F | ≤ 1, so we can apply Fatou’s lemma to the
functions − log |F (reix)|, which converge pointwise almost everywhere
to − log |f(eix)|, with f ∈ H∞(T ) denoting the boundary values of F ,
as usual. This gives

−
∫
T

log |f(eix)| dσ(x) ≤ − log |F (0)|;

in particular, log |f | ∈ L1(T ).
We also see from (6.1) that the harmonic function log |F (z)| satisfies

(2.10), which is the assumption of Theorem 2.3 (with, of course, log |F |
taking the role of what we called F there). By that result, log |F | =
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Pr ∗ µ for some measure µ, which we can obtain as the weak-∗ limit of
the measures log |fr| dσ, with fr(z) = F (rz), as usual. We now want
to show that in fact dµ = log |f | dσ here.

To do this, let’s start out at the other end, and let’s look at Pr∗log |f |.
In fact, let’s do this in more abstract fashion. Let w ∈ L∞(T ), 0 < w ≤
1, logw ∈ L1(T ) (we just showed that w = |f | has these properties,
if |F | ≤ 1 is outer). Then let’s define G = Pr ∗ logw. This is a real
valued (in fact, negative) harmonic function, and I want to provide a
harmonic conjugate, that is, come up with another harmonic function

G̃ such that G + iG̃ is holomorphic. It is a basic result of complex
analysis that such harmonic conjugates exist and are unique, up to an
additive constant, on simply connected domains such as D (but they
won’t exist in general, and for a counterexample, you can consider the
harmonic function F : D \ {0} → R, F (z) = log |z|). But I don’t need
any of this here, since we can just write down a harmonic conjugate
explicitly, as follows. Recall formula (2.4) for the Poisson kernel. So
for real valued g ∈ L1(T ), we can write

(Pr ∗ g)(eix) = Re

∫
T

1 + e−itz

1− e−itz
g(eit) dσ(t), z = reix,

and now we can make a holomorphic function out of this by simply
dropping the real part. Put differently, a harmonic conjugate of Pr ∗ g
is given by Qr ∗ g, with

Qr(e
ix) = Im

1 + z

1− z
=

2r sinx

1− 2r cosx+ r2
.

We also call this function the conjugate Poisson kernel, for the obvious
reasons.

Given a w as above, we can now form H = exp((Pr + iQr) ∗ logw).
This is a holomorphic function on D with |H| = exp(Pr ∗ logw) ≤ 1,
since, as we observed, logw ≤ 0 and thus Pr ∗ logw ≤ 0 as well.
Moreover, |h(eix)| = w(eix) almost everywhere.

I now claim that H ∈ H∞(D) is outer. To prove this, factor H =
QK, with Q inner and K outer. H has no zeros, being an exponential
of another function, so Q(0) 6= 0 also. Recall that |q| = 1, since q
is inner, and if Q is not constant, then |Q(0)| < 1 by the maximum
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principle. Thus

− log |H(0)| = −
∫
T

log |h(eix)| dσ(x) = −
∫
T

log |k(eix)| dσ(x)

=

∫
T

lim inf
r→1−

(− log |K(reix)|) dσ(x)

≤ lim inf
r→1−

(
−
∫
T

log |K(reix)| dσ(x)

)
= − log |K(0)| < − log |H(0)|.

Here I’ve used (6.1) for log |K|, which works because this function is
zero free, and Fatou’s lemma for the first inequality. We have obtained
a contradiction. So Q is in fact constant, and thus H = QK = eiαK is
outer, as claimed. Let’s summarize what we just showed.

Lemma 6.1. Let w ∈ L∞(T ) with 0 < w ≤ 1 and logw ∈ L1(T ). Then
F = exp((Pr + iQr) ∗ logw) is an outer function, F ∈ H∞, |F | ≤ 1.

Now let’s return to our original task. Assume, conversely, that an
outer function F ∈ H∞(D), |F | ≤ 1, is given. As we saw, we can then
write log |F | = Pr ∗ µ, and we wanted to show that in fact log |F | =
Pr ∗ log |f |. We also know, from the remarks following Theorem 2.3,
that dµ = log |f | dσ + dν, with ν singular with respect to σ. The
description of µ as the weak-∗ limit of the measures log |fr| dσ shows
that µ, ν are negative measures (since log |fr| ≤ 0).

Define G = exp((Pr + iQr) ∗ ν). So G ∈ H∞(D), |G| ≤ 1, and
log |G| = Pr ∗ ν. Moreover, the absolutely continuous part of the mea-
sure ν from the Poisson representation of log |G| is log |g| dσ, but ν is
purely singular, so log |g| = 0. In other words, G is an inner function.

Since harmonic conjugates are essentially unique, we must have F =
eiα exp((Pr + iQr) ∗ µ), and thus

(6.2) F/G = eiα exp((Pr + iQr) ∗ log |f |).

Since log |f | ≤ 0, we see from this representation that F/G ∈ H∞(D).
So we can factor F/G = PH, with P inner, H outer, and this gives
F = (GP )H, with GP inner also. But F was outer, by assumption,
and these factorizations are essentially unique, so GP ≡ eiβ. This
means that both G and 1/G are inner, so |G| = 1 on D, and thus
G ≡ eiγ is constant itself. Now (6.2) shows that log |F | = Pr ∗ log |f |,
as claimed.

Let’s again summarize. The restriction that our functions are bounded
can be removed, and I’ll state the result in this generality right away.
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Theorem 6.2. Let F ∈ H2(D) be an outer function. Then log |f | ∈
L1(T ) and log |F | = Pr ∗ log |f |, logF = iα + (Pr + iQr) ∗ log |f |.

Conversely, if a w ∈ L2(T ) with logw ∈ L1(T ) is given, then logF =
(Pr + iQr) ∗ logw defines an outer function with |f | = w.

In particular, since the inner factor doesn’t affect the absolute value
of a general H2(T ) function, we have obtained a very satisfying de-
scription of the absolute values |f | of functions f ∈ H2(T ): a w ≥ 0
satisfies w = |f | for some f ∈ H2(T ), f 6≡ 0, if and only if w ∈ L2

and logw ∈ L1. Since logw ≤ w2 for large w, the only potential prob-
lem with the integrability of logw occurs at the small values of w. So
the condition logw ∈ L1 is best interpreted as a sharpened version of
Theorem 4.3.

An interesting general feature of this result is that the functions w =
|f |, f ∈ Hp(T ), satisfy no additional regularity condition other than
w ∈ Lp (if that even is a regularity condition). They are only restricted
by not being allowed to vanish (or even become small) too frequently.
On the other hand, f is the boundary value of the holomorphic function
F . So such a boundary value can be rather irregular, for example
discontinuous everywhere, even if F is bounded.

Another interesting insight contained in Theorem 6.2 is the fact that
|F | on T determines the whole function, up to a phase factor, if F ∈
H2(D) is outer. This is certainly not true if F is not outer. For
example, F (z) = z and F = 1 have the same absolute value on the
boundary. In the next section, we will see that there is large supply of
inner functions, even if only zero free functions are considered.

Theorem 6.2 describes the outer functions as those F ∈ H2 for which
log |F | is the Poisson integral of its boundary values log |f |. This, and
not our functional analytic condition from Definition 5.1, is usually
taken as the defining property.

Exercise 6.1. Assuming Theorem 6.2, establish the analogous charac-
terization of |f | for Hp(T ) for arbitrary 1 ≤ p ≤ ∞. More specifically,
prove the following: w ≥ 0 satisfies w = |f | for some f ∈ Hp(T ), f 6≡ 0,
if and only if w ∈ Lp(T ) and logw ∈ L1(T ). Suggestion: First deal
with the case p = 1, relying on Theorem 5.3. Then handle Hp ⊆ H1

for general p ≥ 1 by recalling that Hp = H1 ∩ Lp.
Proof of Theorem 6.2. Let F ∈ H2(D) be an outer function. We al-
ready proved the statements about F if F is, in addition, bounded. To
remove this extra assumption, let’s first establish that log |f | ∈ L1(T )
also in general. This we can do by essentially the original argument,
in a slightly upgraded version: return to (6.1), which is clearly valid
for any zero free holomorphic F , and split log |F | = log+ |F | − log− |F |
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into its positive and negative parts (so for x ∈ R we define x+ = x if
x ≥ 0 and x = 0 otherwise, and similarly for x−). Then∫

T

log− |fr| dσ = −
∫
T

log |fr| dσ +

∫
T

log+ |fr| dσ

= − log |F (0)|+
∫
T

log+ |fr| dσ.

Now log+ x > 0 only if x > 1, so log+ |fr| ≤ |fr|2. This shows that the
last integral stays bounded when we send r → 1−, and thus Fatou’s
lemma still proves that log− |f | ∈ L1(T ).

Let w = min{1, 1/|f |}, so 0 < w ≤ 1, as above. Moreover, logw ≤
| log |f || ∈ L1(T ). So we may use Lemma 6.1 to produce an outer
function G = exp((Pr + iQr) ∗ logw), |G| ≤ 1. The function FG also
satisfies |FG| ≤ 1 since |fg| ≤ |f |/|f | ≤ 1 on T . I now claim that it
is also outer. To prove this, recall that F was outer, by assumption,
so Mf = H2(T ). In particular, we can find polynomials Pn =

∑
ake

ikx

such that Pnf → 1 in H2(T ). Then also Pnfg → g in H2(T ), since
|g| ≤ 1. This says that g ∈ Mfg, and thus Mfg ⊇ Mg = H2. So fg is
outer, as claimed. For future reference, let’s state a general version of
this step.

Lemma 6.3. Let f ∈ H2, let g ∈ H∞ be an outer function, and assume
that fg ∈ H∞ also. Then f is outer if and only if fg is outer.

Proof. We just proved one direction. To discuss the other, assume now
that fg is outer, and factor f = ph, with p inner, h outer. Then
fg = p(gh), and here we know that gh ∈ H2 is outer, by the direction
already established. But fg is outer itself, so p is constant here and
this shows that f = ph is outer as well. �

Since |FG| ≤ 1, we are back in the case already dealt with, and
we know that log |FG| = Pr ∗ log |fg| is the Poisson integral of its
boundary values. Since this is also true of log |G|, which was in fact
defined as a Poisson integral (of logw), and log |FG| = log |F |+log |G|
and similarly for log |fg|, we conclude that log |F | = Pr ∗ log |f | also.
The formula for logF is then an immediate consequence of this, by
providing a harmonic conjugate.

The converse follows from Jensen’s inequality, which says that if µ
is a probability measure on a space X and g : X → R, g ∈ L1(X,µ),
and ϕ : R→ R is convex, then

(6.3) ϕ

(∫
X

g(t) dµ(t)

)
≤
∫
X

ϕ(g(t)) dµ(t).
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(In essence this is just restating the defining property of convex func-
tions, namely that averages of values lie above the value at the average,
in a continuous version, but of course a formal proof needs to be done
more carefully.)

We’ll apply this to X = T , dµ(t) = Pr(e
i(x−t)) dσ(t), ϕ(s) = es, and

g(t) = logw(eit). We obtain the inequality

ePr∗logw ≤ Pr ∗ w.

Exercise 6.2. Explain this step in more detail, by writing out the inte-
gral implicit in Pr ∗ logw.

So F = exp((Pr+iQr)∗ logw) satisfies |F | = exp(Pr ∗ logw) ≤ Pr ∗w
and since w ∈ L2, this latter function satisfies (2.7) for p = 2 and
hence so does F . In other words, F ∈ H2(D), as claimed. To prove
that F is outer, we use the same trick as above and reduce matters
to the situation for bounded functions by introducing G ∈ H∞ as
log |G| = Pr ∗ log v, v = min{1, 1/|f |}. (Or, what amounts to the same,
log v = − log+w.) Then |FG| ≤ 1 and log |FG| = Pr ∗ (− log−w), so
FG is of the type discussed in Lemma 6.1 and hence this function is
outer, and so is G, by the same argument. Now we finish the proof by
referring to Lemma 6.3. �

7. Inner functions

It is now natural to round off our treatment by attempting to give a
complex analytic description of inner functions also. I’ll report quickly
on this, but won’t give any proofs.

One of the basic ideas of the previous section was to look at the
Poisson representation of the harmonic function log |F |. This we can
also do for an inner function S ∈ H∞(D) if S is zero free; if S has zeros,
then of course log |S| isn’t even defined everywhere on D. For a zero
free S, we can write log |S| = Pr∗µ, as in Theorem 2.3. Recall one more
time that dµ is the weak-∗ limit of the (signed) measures log |sr| dσ,
and the absolutely continuous part of µ is log |s| dσ. Since S is inner,
log |s| = 0. So the measure µ is purely singular, and negative, since
|sr| ≤ 1. So every zero free inner function S is of the form

(7.1) S = eiα exp((Pr + iQr) ∗ µ),

for some negative singular measure µ. Conversely, it is clear from the
same arguments that for any such µ, (7.1) defines a zero free inner
function, and in fact we observed this earlier, during the analysis lead-
ing up to Theorem 6.2. These functions are also called singular inner
functions.
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Of course, unlike outer functions, an inner function is not guaranteed
to be zero free. For example, F (z) = z is inner. We say that zn ∈ D
satisfy the Blaschke condition if

(7.2)
∑

(1− |zn|) <∞;

this is of course automatic if zn is a finite sequence, and for an infinite
sequence the condition insists on reasonably rapid approach to the
boundary T of the zn for large n.

Given zn ∈ D satisfying the Blaschke condition, we define the corre-
sponding Blaschke product as

B(z) = zk
∏ z − zn

1− znz
|zn|

(−zn)
.

(7.2) will imply that the infinite product (if it indeed is infinite) con-
verges absolutely and locally uniformly on D and thus defines a holo-
morphic function B : D → C. Clearly, B has zeros at exactly the
zn. It can also be shown that B ∈ H∞(D) and B is inner, that is,
|b(eix)| = 1 almost everywhere. (This is actually immediately plausible
if you recognize the individual factors as Möbius transformations, so
they map D back to itself bijectively, and they same is true for T .)

This two part list of inner functions now exhausts all possibilities in
the sense that every inner function F is of the form F = BS, with B
a Blaschke product and S a singular inner function. As an interesting
corollary of this description we obtain a characterization of the zero
sets of functions F ∈ Hp(D) as exactly the sequences satisfying the
Blaschke condition (7.2).

A general F ∈ H2(D) can now be written as F = BSG, with B a
Blaschke product, S a singular inner function, and G outer. A good
summary of what is going on here goes as follows: given an F ∈ H2(D),
first of all divide out its zeros with the help of a Blaschke product, so
form F/B. This is a zero free holomorphic function, so log |F/B| is
harmonic. Moreover, it has a Poisson representation log |F/B| = Pr∗µ.
In general, µ will have an absolutely continuous part log |f/b| dσ =
log |f | dσ, and a (negative) singular part ν. The absolutely continuous
part is responsible for the outer factor log |G| = Pr ∗ log |f |, while the
singular part produces the singular inner factor log |S| = Pr ∗ ν.


