
7. Banach algebras

Definition 7.1. A is called a Banach algebra (with unit) if: (1) A is a
Banach space;
(2) There is a multiplication A × A → A that has the following pro-
perties:

(xy)z = x(yz), (x+ y)z = xz + yz, x(y + z) = xy + xz,

c(xy) = (cx)y = x(cy)

for all x, y, z ∈ A, c ∈ C. Moreover, there is a unit element e: ex =
xe = x for all x ∈ A;
(3) ‖e‖ = 1;
(4) ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A.

So a Banach algebra is an algebra, that is, it is a vector space that is
also a ring, with a compatibility condition between the two structures,
or we can say more informally that an algebra is a vector space with a
multiplication, obeying the usual algebraic rules. Moreover, a Banach
algebra is also a Banach space, and the norm is compatible with the
algebraic structure (conditions (3), (4)).

At the end of the last chapter, we decided to try to analyze normal
operators on a Hilbert space H. Banach algebras will prove useful here,
because of the following:

Example 7.1. If X is a Banach space, then A = B(X) is a Banach
algebra, with the composition of operators as multiplication and the
operator norm. Indeed, we know from Theorem 2.12(b) that A is a
Banach space, and composition of operators has the properties from
(2) of Definition 7.1. The identity operator 1 is the unit element; of
course ‖1‖ = sup‖x‖=1 ‖x‖ = 1, as required, and (4) was discussed in
Exercise 2.25.

Of course, there are more examples:

Example 7.2. A = C with the usual multiplication and the absolute
value as norm is a Banach algebra.

Example 7.3. A = C(K) with the pointwise multiplication (fg)(x) =
f(x)g(x) is a Banach algebra. Most properties are obvious. The unit
element is the function e(x) ≡ 1; clearly, this has norm 1, as required.
To verify (4), notice that

‖fg‖ = max
x∈K
|f(x)g(x)| ≤ max

x∈K
|f(x)|max

x∈K
|g(x)| = ‖f‖ ‖g‖.

Example 7.4. Similarly, A = L∞ and A = `∞ with the pointwise mul-
tiplication are Banach algebras.
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Notice that the last three examples are in fact commutative Banach
algebras, that is, xy = yx for all x, y ∈ A. On the other hand, B(X) is
not commutative if dimX > 1.

Example 7.5. A = L1(R) with the convolution product

(fg)(x) = (f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt

satisfies most of the properties from Definition 7.1, but does not have
a unit element, so this would provide an example of a Banach algebra
without a unit.

On the other hand, the discrete analog A = `1(Z) with the convolu-
tion product

(xy)n =
∞∑

j=−∞

xjyn−j

is a Banach algebra with unit. Both L1 and `1 are commutative.

Exercise 7.1. Prove the claims about the unit elements: Show that there
is no function f ∈ L1(R) such that f ∗ g = g ∗ f = g for all g ∈ L1(R).
Also, find the unit element e of `1(Z).

We now start to develop the general theory of Banach algebras.

Theorem 7.2. Multiplication is continuous in Banach algebras: If
xn → x, yn → y, then xnyn → xy.

Proof.

‖xnyn − xy‖ ≤ ‖(xn − x)yn‖+ ‖x(yn − y)‖
≤ ‖xn − x‖ ‖yn‖+ ‖x‖ ‖yn − y‖ → 0

�

We call x ∈ A invertible if there exists y ∈ A such that xy = yx = e.
Note that on the Banach algebra B(H), this reproduces the definition
of invertibility in B(H) that was given earlier, in Chapter 6. Returning
to the general situation, we observe that if x ∈ A is invertible, then
y with these properties is unique. We write y = x−1 and call x−1 the
inverse of x. We denote the set of invertible elements by G(A). Here,
the choice of symbol is motivated by the fact that G(A) is a group,
with multiplication as the group operation. Indeed, if x, y ∈ G(A),
then also xy ∈ G(A) and x−1 ∈ G(A): this can be verified by just
writing down the inverses: (xy)−1 = y−1x−1, (x−1)−1 = x. Moreover,
e ∈ G(A) (e−1 = e), and of course multiplication is associative.

If A,B are algebras, then a map φ : A→ B is called a homomorphism
if it preserves the algebraic structure. More precisely, we demand that
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φ is linear (as a map between vector spaces) and φ(xy) = φ(x)φ(y) for
all x, y ∈ A.

We also could have included the condition that φ(e) = e′ (but didn’t);
if we want to emphasize the distinction, then such a map could be called
a unital homomorphism. See also Exercise 7.3 below.

By a complex homomorphism we mean a homomorphism φ : A→ C,
φ 6≡ 0.

Proposition 7.3. Let φ be a complex homomorphism. Then φ(e) = 1
and φ(x) 6= 0 for all x ∈ G(A).

Proof. Since φ 6≡ 0, there is a y ∈ A with φ(y) 6= 0. Since φ(y) =
φ(ey) = φ(e)φ(y), we have φ(e) = 1. If x ∈ G(A), then φ(x)φ(x−1) =
φ(e) = 1, so φ(x) 6= 0. �

Exercise 7.2. Let A be an algebra, with unit e. True or false:
(a) fx = x for all x ∈ A =⇒ f = e;
(b) 0x = 0 for all x ∈ A;
(c) xy = 0 =⇒ x = 0 or y = 0;
(d) xy = zx = e =⇒ x ∈ G(A) and y = z = x−1;
(e) xy, yx ∈ G(A) =⇒ x, y ∈ G(A);
(f) xy = e =⇒ x ∈ G(A) or y ∈ G(A).

Exercise 7.3. (a) Give an example of a homomorphism φ : A → B,
φ 6≡ 0, that is not unital, that is, φ(eA) 6= eB.

(b) However, show that if φ : A→ B is a surjective homomorphism,
then φ is unital.

Theorem 7.4. Let A be a Banach algebra. If x ∈ A, ‖x‖ < 1, then
e− x ∈ G(A) and

(7.1) (e− x)−1 =
∞∑
n=0

xn.

Moreover, if φ is a complex homomorphism, then |φ(x)| < 1.

Here, we define xn = xx · · · x as the n-fold product of x with itself,
and x0 := e. The series from (7.1) is then defined, as usual, as the
norm limit of the partial sums (existence of this limit is part of the
statement, of course). It generalizes the geometric series to the Banach
algebra setting and is called the Neumann series.

Proof. Property (4) from Definition 7.1 implies that ‖xn‖ ≤ ‖x‖n. Sin-
ce ‖x‖ < 1, we now see that

∑
‖xn‖ converges. It follows that the

Neumann series converges, too (see Exercise 2.22). By the continuity



70 Christian Remling

of the multiplication in A,

(e− x)
∞∑
n=0

xn = (e− x) lim
N→∞

N∑
n=0

xn = lim
N→∞

(e− x)
N∑
n=0

xn

= lim
N→∞

(
N∑
n=0

xn −
N∑
n=0

xn+1

)
= lim

N→∞

(
e− xN+1

)
= e.

A similar calculation shows that (
∑∞

n=0 x
n) (e−x) = e, so indeed e−x ∈

G(A) and the inverse is given by (7.1).
If c ∈ C, |c| ≥ 1, then, by what has just been shown, e − (1/c)x ∈

G(A), so φ(e − (1/c)x) = 1 − (1/c)φ(x) 6= 0 by Proposition 7.3, that
is, φ(x) 6= c. �

Corollary 7.5. (a) G(A) is open. More precisely, if x ∈ G(A) and
‖h‖ < 1

‖x−1‖ , then x+ h ∈ G(A) also.

(b) If φ is a complex homomorphism, then φ ∈ A∗ and ‖φ‖ = 1.

Proof. (a) Write x + h = x(e + x−1h). Since ‖x−1h‖ ≤ ‖x−1‖ ‖h‖ < 1,
Theorem 7.4 shows that e + x−1h ∈ G(A). Since also x ∈ G(A) and
G(A) is a group, it follows that x+ h ∈ G(A), too.

(b) The last part of Theorem 7.4 says that φ is bounded and ‖φ‖ ≤ 1.
Since φ(e) = 1 and ‖e‖ = 1, it follows that ‖φ‖ = 1. �

Exercise 7.4. We can also run a more quantitative version of the ar-
gument from (a) to obtain the following: Inversion in Banach algebras
is a continuous operation. More precisely, if x ∈ G(A) and ε > 0,
then there exists δ > 0 such that if ‖y − x‖ < δ, then y ∈ G(A) and
‖y−1 − x−1‖ < ε. Prove this.

We now introduce the Banach algebra version of Definition 6.7.

Definition 7.6. Let x ∈ A. Then we define

ρ(x) = {z ∈ C : x− ze ∈ G(A)},
σ(x) = C \ ρ(x),

r(x) = sup{|z| : z ∈ σ(x)}.

We call ρ(x) the resolvent set, σ(x) the spectrum, and r(x) the spectral
radius of x. Also, (x − ze)−1, which is defined for z ∈ ρ(x), is called
the resolvent of x.

Theorem 7.7. (a) ρ(x) is an open subset of C.
(b) The resolvent R(z) = (x−ze)−1 admits power series representations
about every point z0 ∈ ρ(x). More specifically, if z0 ∈ ρ(x), then there



Banach algebras 71

exists r > 0 with {z : |z − z0| < r} ⊆ ρ(x) and

(x− ze)−1 =
∞∑
n=0

(x− z0e)−n−1(z − z0)n

for all z with |z − z0| < r.

Here we define y−n, for n ≥ 0 and invertible y, as y−n = (y−1)n.
More succinctly, we can say that the resolvent R(z) is a holomorphic
function (which takes values in a Banach algebra) on ρ(x); we then
simply define this notion by the property from Theorem 7.7(b).

Proof. (a) This is an immediate consequence of Corollary 7.5 because
‖x− ze− (x− z0)e‖ = |z − z0|.

(b) As in (a) and the proof of Corollary 7.5(a), we see that Br(z0) ⊆
ρ(x) if we take r = 1/‖(x−z0e)−1‖. Moreover, we can use the Neumann
series to expand R(z), as follows:

(x− ze)−1 =
[
(e− (z − z0)(x− z0e)−1)(x− z0e)

]−1
= (x− z0e)−1

[
e− (z − z0)(x− z0e)−1

]−1
= (x− z0e)−1

∞∑
n=0

(x− z0e)−n(z − z0)n

=
∞∑
n=0

(x− z0e)−n−1(z − z0)n

We have used the continuity of the multiplication in the last step. �

Theorem 7.8. (a) σ(x) is a compact, non-empty subset of C.
(b) r(x) = infn∈N ‖xn‖1/n = limn→∞ ‖xn‖1/n

The existence of the limit in part (b) is part of the statement. Note
also that ‖xn‖ ≤ ‖x‖n, by using property (4) from Definition 7.1 re-
peatedly, so we always have r(x) ≤ ‖x‖. Strict inequality is possible
here.

The inconspicuous spectral radius formula from part (b) has a rather
remarkable property: r(x) is a purely algebraic quantity (to work out
r(x), find the biggest |z| for which x−ze does not have a multiplicative
inverse), but nevertheless r(x) is closely related to the norm on A via
the spectral radius formula.

Proof. (a) We know from Theorem 7.7(a) that σ(x) = C\ρ(x) is closed.
Moreover, if |z| > ‖x‖, then x − ze = (−z)(e − (1/z)x) ∈ G(A) by
Theorem 7.4, so σ(x) is also bounded and thus a compact subset of C.
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We also obtain the representation

(7.2) (x− ze)−1 = −
∞∑
n=0

z−n−1xn

from Theorem 7.4; this is valid for |z| > ‖x‖. Suppose now that we
had σ(x) = ∅. For an arbitrary F ∈ A∗, we can introduce the function
g : ρ(x) → C, g(z) = F ((x − ze)−1). Since we are assuming that
σ(x) = ∅, this function is really defined on all of C. Moreover, by using
Theorem 7.7(b) and the continuity of F , we see that g has convergent
power series representations about every point and thus is holomorphic
(in the traditional sense). If |z| ≥ 2‖x‖, then (7.2) yields

|g(z)| =

∣∣∣∣∣F
(
∞∑
n=0

z−n−1xn

)∣∣∣∣∣ ≤ ‖F‖
∞∑
n=0

|z|−n−1‖x‖n

≤ ‖F‖
|z|

∞∑
n=0

2−n =
2‖F‖
|z|

.

So g is a bounded entire function. By Liouville’s Theorem, g must be
constant. Since g(z)→ 0 as |z| → ∞, this constant must be zero. This,
however, is not possible, because F (y) = 0 for all F ∈ A∗ would imply
that y = 0, by Corollary 4.2(b), but clearly the inverse (x− ze)−1 can
not be the zero element of A. The assumption that σ(x) = ∅ must be
dropped.

(b) Let n ∈ N and let z ∈ C be such that zn ∈ ρ(xn). We can write

xn − zne = (x− ze)(zn−1e+ zn−2x+ · · ·+ xn−1),

and now multiplication from the right by (xn−zne)−1 shows that x−ze
has a right inverse. A similar calculation provides a left inverse also,
so it follows that z ∈ ρ(x) (we are using Exercise 7.2(d) here!). Put
differently, zn ∈ σ(xn) if z ∈ σ(x). The proof of part (a) has shown
that |z| ≤ ‖y‖ for all z ∈ σ(y), so we now obtain |zn| ≤ ‖xn‖ for all
z ∈ σ(x). Since the spectral radius r(x) was defined as the maximum of
the spectrum (we cautiously worked with the supremum in the original
definition, but we now know that σ(x) is a compact set), this says that
r(x) ≤ inf ‖xn‖1/n.

Next, consider again the function g(z) = F ((x−ze)−1), with F ∈ A∗.
This is holomorphic on ρ(x) ⊇ {z ∈ C : |z| > r(x)}. Furthermore, for
|z| > ‖x‖, we have the power series expansion (in z−1)

g(z) = −
∞∑
n=0

F (xn)
(
z−1
)n+1

.
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This shows that g is holomorphic near z = ∞; more precisely, if we
let ζ = 1/z and h(ζ) = g(1/ζ), then h has a convergent power series
expansion, h(ζ) = −

∑∞
n=0 F (xn)ζn+1, which is valid for small |ζ|. Mo-

reover, by our earlier remarks, h also has a holomorphic extension to
the disk {ζ : |ζ| < 1/r(x)} (the extension is provided by the original
definition of g). A power series converges on the biggest disk to which
the function can be holomorphically extended; thus the radius of con-
vergence of the series

∑
F (xn)ζn+1 is at least 1/r(x). In particular, if

0 < a < 1/r(x), then

F (xn)an = F (anxn)→ 0 (n→∞).

Since this is true for arbitrary F ∈ A∗, we have in fact shown that
anxn

w−→ 0. Weakly convergent sequences are bounded (Exercise 4.23),
so ‖anxn‖ ≤ C (n ∈ N) for suitable C = C(a) ≥ 0. Hence

‖xn‖1/n ≤ 1

a
C1/n → 1

a
,

and here a < 1/r(x) was arbitrary and we can take the limit on any
subsequence, so r(x) ≥ lim supn→∞ ‖xn‖1/n. On the other hand, we
have already proved that

r(x) ≤ inf
n∈N
‖xn‖1/n ≤ lim inf

n→∞
‖xn‖1/n,

so we now obtain the full claim. �

You should now work out some spectra in concrete examples. The
first example is particularly important for us, so I’ll state this as a
Proposition:

Proposition 7.9. Consider the Banach algebra A = C(K). Then, for
f ∈ C(K), we have σ(f) = f(K), where f(K) = {f(x) : x ∈ K}.
Moreover, r(f) = ‖f‖ for all f ∈ C(K).

Exercise 7.5. Prove Proposition 7.9.

Exercise 7.6. (a) Show that on A = `∞, we have

σ(x) = {xn : n ∈ N}.
Also, show that again r(x) = ‖x‖ for all x ∈ `∞.
(b) Show that on A = L∞(X,µ), we have

σ(f) = {z ∈ C : µ({x ∈ X : |f(x)− z| < ε}) > 0 for all ε > 0} .
(This set is also called the essential range of f ; roughly speaking, it
is the range of f , but we ignore what happens on null sets, in keeping
with the usual philosophy. Also, it is again true that r(f) = ‖f‖.)
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Exercise 7.7. Show that on A = B(Cn), the spectrum σ(T ) of a matrix
T ∈ B(Cn) = Cn×n is the set of eigenvalues of T (this was discussed
earlier, in Chapter 6). Now find a matrix T ∈ C2×2 for which r(T ) <
‖T‖.

The fact that spectra are always non-empty has the following conse-
quence:

Theorem 7.10 (Gelfand-Mazur). If A is a Banach algebra with G(A) =
A \ {0}, then A ∼= C.

More specifically, the claim is that there is an identification map
between A and C (thought of as a Banach algebra, with the usual
multiplication and the absolute value as the norm) that preserves the
complete Banach algebra structure: There is a map ϕ : A → C that
is bijective (= preserves sets), a homomorphism (= preserves the alge-
braic structure), and an isometry (= preserves the norm).

Proof. By Theorem 7.8(a), we can pick a number z(x) ∈ σ(x) for each
x ∈ A. So x − z(x)e /∈ G(A), but the only non-invertible element of
A is the zero vector, so x = z(x)e (and we also learn that in fact
σ(x) = {z(x)}). The map ϕ : A → C, ϕ(x) = z(x) has the desired
properties. �

In the last part of this chapter, we discuss the problem of how the
spectrum of an element changes when we pass to a smaller Banach
algebra. Let B be a Banach algebra, and let A ⊆ B be a subalgebra.
By this we mean that A with the structure inherited from B is a Ba-
nach algebra itself. We also insist that e ∈ A. Note that this latter
requirement could be dropped, and in fact that would perhaps be the
more common version of the definition of a subalgebra. The following
Exercise discusses the difference between the two versions. It may also
be helpful to recall Exercise 7.3 here.

Exercise 7.8. Let B be a Banach algebra, and let C ⊆ B be a subset
that also is a Banach algebra with unit element with the structure
(algebraic operations, norm) inherited from B. Give a (simple) example
of such a situation where e /∈ C.
Remark: This is very straightforward. Just make sure you don’t get
confused. C is required to have a unit (call it f , say), but what exactly
is f required to do?

If we now fix an element x ∈ A of the smaller algebra, we can consider
its spectrum with respect to both algebras. From the definition, it is
clear that σA(x) ⊇ σB(x): everything that is invertible in A remains
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invertible in B, but we may lose invertibility when going from B to
A simply because the required inverse may no longer be part of the
algebra.

Furthermore, Theorem 7.8(b) shows that rA(x) = rB(x). More can
be said about the relation between σA(x) and σB(x), but this requires
some work. This material will be needed later, but is of a technical
character and can be given a light reading at this point.

We need the notion of connected components in a topological space;
actually, we only need this for the space X = C. Recall that we call
a topological space X connected if the only decomposition of X into
two disjoint open sets is the trivial one: if X = U ∪ V , U ∩ V = ∅,
and U, V are open, then U = X or V = X. A subset A ⊆ X is
called connected if A with the relative topology is a connected topolo-
gical space. A connected component is a maximal connected set. These
connected components always exist and in fact every point lies in a
unique connected component, and the whole space can be written as
the disjoint union of its connected components.

For a detailed reading of this final section, the following topological
warm-up should be helpful. You can either try to solve this directly or
do some reading.

Exercise 7.9. (a) Prove these facts. More specifically, show that if x ∈
X, then there exists a unique maximal connected set Cx with x ∈ Cx.
So if D is another connected set with x ∈ D, then D ⊆ Cx. Also, show
that if x, y ∈ X, then either Cx ∩ Cy = ∅ or Cx = Cy.
(b) Call A ⊆ X pathwise connected if any two points can be joined
by a continuous curve: If x, y ∈ A, then there exists a continuous map
ϕ : [0, 1]→ A with ϕ(0) = x, ϕ(1) = y. Show that a pathwise connected
set is connected.
(c) Show that if U ⊆ C is open, then all connected components of U
are open subsets of C.

We are heading towards the following general result:

Theorem 7.11. Let A ⊆ B be a subalgebra of the Banach algebra B,
and let x ∈ A. Then we have a representation of the following type:

σA(x) = σB(x) ∪ C,

where C is a (necessarily disjoint) union of connected components of
ρB(x) (C = ∅ is possible, of course).

This has the following consequences (whose relevance is more ob-
vious):
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Corollary 7.12. (a) If ρB(x) is connected, then σA(x) = σB(x). In
particular, this conclusion holds if σB(x) ⊆ R.

(b) If
◦
σA(x) = ∅, then σA(x) = σB(x).

Here,
◦
C denotes the interior of C, defined as the largest open subset

of C.
To prove the Corollary (given the Theorem), note that the hypothesis

that ρB(x) is connected means that the only connected component of
this set is ρB(x) itself, but we cannot have σA(x) = σB(x) ∪ ρB(x)
because ρB(x) is unbounded (being the complement of the compact
set σB(x)), and σA(x) needs to be compact. If σB(x) is a (compact!)
subset of R, then clearly its complement ρB(x) is pathwise connected,
thus connected. Compare Exercise 7.9(b).

Part (b) follows from the fact that the connected components of the
open set ρB(x) are open (Exercise 7.9(c)), so if we had C 6= ∅, then
automatically σA(x) would have non-empty interior.

To prove Theorem 7.11, we need the following topological fact.

Lemma 7.13. Let U, V ⊆ X be open subsets of the topological space
X, and assume that U ⊆ V , (U \ U) ∩ V = ∅. Then U =

⋃
Vα, where

the Vα are connected components of V (but not necessarily all of these,
of course).

Proof. We must show that if W is a connected component of V with
W ∩ U 6= ∅, then W ⊆ U (assuming this, we can then indeed write
U as the union of those components of V that intersect U). So let W
be such a component. From the assumption of the Lemma, we obtain
W ∩ (U \ U) = ∅. Hence

W = (W ∩ U) ∪ (W ∩ U c
).

This is a decomposition of W into two disjoint relatively (!) open sub-
sets. Since W is connected by assumption, one of these must be all of
W , and since W ∩ U 6= ∅, it is the first set: W ∩ U = W , so W ⊆ U ,
as desired. �

We are now ready for the

Proof of Theorem 7.11. We will verify the hypotheses of Lemma 7.13
for U = ρA(x), V = ρB(x). The Lemma will then show that ρA(x) =⋃
α∈I0 Vα, where the Vα are connected components of ρB(x). Also, ρB(x) =⋃
α∈I Vα, and I0 ⊆ I, so we indeed obtain

σA(x) = C \ ρA(x) = σB(x) ∪
⋃

α∈I\I0

Vα.
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Clearly, ρA(x) ⊆ ρB(x), so we must check that (ρA(x)\ρA(x))∩ρB(x) =

∅. Let z ∈ ρA(x) \ ρA(x). Then there are zn ∈ ρA(x), zn → z. I now
claim that

(7.3)
∥∥(x− zne)−1

∥∥→∞ (n→∞).

Suppose this were wrong. Then |z − zn| ‖(x − zne)
−1‖ < 1 for some

(large) n, and hence

(x− zne)−1(x− ze) = e− (z − zn)(x− zne)−1

would be in G(A) by Theorem 7.4, but then also x − ze ∈ G(A), and
this contradicts z /∈ ρA(x). Thus (7.3) holds. Now (7.3) also prevents
x − ze from being invertible in B, because inversion is a continuous
operation in Banach algebras (Exercise 7.4). More explicitly, if we had
x − ze ∈ G(B), then, since x − zne → x − ze, it would follow that
(x − zne)−1 → (x − ze)−1, but this convergence is ruled out by (7.3).
So x− ze /∈ G(B), or, put differently, z /∈ ρB(x). �

Exercise 7.10. Show that r(xy) = r(yx). Hint: Use the formula (xy)n =
x(yx)n−1y.

Exercise 7.11. Prove that σ(xy) and σ(yx) can at most differ by the
point 0. (In particular, this again implies the result from Exercise 7.10,
but of course the direct proof suggested there was much easier.)
Suggested strategy: This essentially amounts to showing that e− xy is
invertible if and only if e − yx is invertible. So assume that e − xy ∈
G(A). Assume also that ‖x‖, ‖y‖ < 1 and write (e−xy)−1, (e−yx)−1 as
Neumann series. Use the formula from the previous problem to obtain
one inverse in terms of the other. Then show that this formula actually
works in complete generality, without the assumptions on x, y.


