
4. Dual spaces and weak topologies

Recall that if X is a Banach space, we write X∗ for its dual. This was
defined as the space of all continuous (or bounded) linear functionals
F : X → C. We know from the special case Y = C of Theorem 2.12
that X∗ itself is a Banach space, too, if we use the operator norm

‖F‖ = sup
‖x‖=1

|F (x)| (F ∈ X∗).

The following fundamental result makes sure that there is a large supply
of bounded linear functionals on every normed space.

Theorem 4.1 (Hahn-Banach). Let X be a normed space and let M be
a subspace of X. Suppose that F : M → C is a linear map satisfying
|F (x)| ≤ C‖x‖ (x ∈M). Then there exists a linear extension G : X →
C of F satisfying |G(x)| ≤ C‖x‖ for all x ∈ X.

In other words, a bounded linear functional on a subspace can always
be extended to the whole space without increasing the norm. This latter
property is the point here; it is easy, at least in principle, to linearly
extend a given functional. (Sketch: Fix a basis of M as a vector space,
extend to a basis of the whole space and assign arbitrary values on
these new basis vectors.)

Proof. We first prove a real version of theorem. So, for the time being,
let X be a real vector space, and assume that F : M → R is a bounded
linear functional on a subspace.

Roughly speaking, the extension will be done one step at a time. So
our first goal is to show that F can be extended to a one-dimensional
extension of M in such a way that the operator norm is preserved. We
are assuming that |F (x)| ≤ C‖x‖; in fact, since C‖x‖ defines a new
norm on X (if C > 0), we can assume that C = 1 here.

Now let x1 ∈ X, x1 /∈M . We want to define a linear extension F1 of
F on the (slightly, by one dimension) bigger space

M1 = {x+ cx1 : x ∈M, c ∈ R}.

Such a linear extension is completely determined by the value f =
F1(x1) (and, conversely, every f ∈ R will define an extension). Since
we also want an extension that still satisfies |F1(y)| ≤ ‖y‖ (y ∈ M1),
we’re looking for an f ∈ R such that

(4.1) −‖x+ cx1‖ ≤ F (x) + cf ≤ ‖x+ cx1‖

for all c ∈ R, x ∈ M . By assumption, we already have this for c = 0,
and by discussing the cases c > 0 and c < 0 separately, we see that

34
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(4.1) is equivalent to

−
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∥∥∥− F (x
c

)
for all c 6= 0, x ∈ M . In other words, there will be an extension F1

with the desired properties if (and only if, but of course that is not our
concern here)

‖z + x1‖ − F (z) ≥ −‖y + x1‖ − F (y)

for arbitrary y, z ∈M . This is indeed the case, because

F (z)− F (y) = F (z − y) ≤ ‖z − y‖ ≤ ‖z + x1‖+ ‖x1 + y‖.

We now use Zorn’s Lemma to obtain a norm preserving extension
to all of X (this part of the proof can be safely skipped if you’re not
familiar with this type of argument). We consider the set of all linear
extensions G of F that satisfy |G(x)| ≤ ‖x‖ on the subspace on which
they are defined. This set can be partially ordered by declaring G ≺ G′

if G′ is an extension of G. Now if {Gα} is a totally ordered subset (any
two Gα’s can be compared) and if we denote the domain of Gα by Mα,
then G :

⋃
Mα → R, G(x) = Gα(x) defines an extension of all the Gα’s,

that is, G � Gα for all α. Note that there are no consistency problems
in the definition of G because if there is more than one possible choice
for α for any given x, then the corresponding Gα’s must give the same
value on x because one of them is an extension of the other.

We have verified the hypotheses of Zorn’s Lemma. The conclusion
is that there is a G that is maximal in the sense that if H � G,
then H = G. This G must be defined on the whole space X because
otherwise the procedure described above would give an extension H to
a strictly bigger space. We have proved the real version of the Hahn-
Banach Theorem.

The original, complex version can be derived from this by some ele-
mentary, but ingenious trickery, as follows: First of all, we can think
of X and M as real vector spaces also (we just refuse to multiply by
non-real numbers and otherwise keep the algebraic structure intact).
Moreover, L0(x) = Re F (x) defines an R-linear functional L0 : M → R.
By the real version of the theorem, there exists an R-linear extension
L : X → R, |L(x)| ≤ ‖x‖.

I now claim that the following definition will work: G(x) = L(x) −
iL(ix) Indeed, it is easy to check that G(x+ y) = G(x) +G(y), and if
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c = a+ ib ∈ C, then

G(cx) = L(ax+ ibx)− iL(iax− bx)

= aL(x) + bL(ix)− iaL(ix) + ibL(x)

= (a+ ib)L(x) + (b− ia)L(ix) = c(L(x)− iL(ix)) = cG(x).

So G is C-linear. It is also an extension of F because if x ∈ M , then
L(x) = L0(x) = Re F (x) and thus

G(x) = Re F (x)− i Re F (ix) = Re F (x)− i Re(iF (x))

= Re F (x) + i Im F (x) = F (x).

Finally, if we write G(x) = |G(x)|eiϕ(x), we see that

|G(x)| = G(x)e−iϕ(x) = G(e−iϕ(x)x) = Re G(e−iϕ(x)x)

= L(e−iϕ(x)x) ≤ ‖e−iϕ(x)x‖ = ‖x‖.
�

Here are some immediate important consequences of the Hahn-Banach
Theorem. They confirm that much can be learned about a Banach
spaces by studying its dual. For example, part (b) says that norms can
be computed by testing functionals on the given vector x.

Corollary 4.2. Let X, Y be normed spaces.
(a) X∗ separates the points X, that is, if x, y ∈ X, x 6= y, then there
exists an F ∈ X∗ with F (x) 6= F (y).
(b) For all x ∈ X, we have

‖x‖ = sup{|F (x)| : F ∈ X∗, ‖F‖ = 1}.
(c) If T ∈ B(X, Y ), then

‖T‖ = sup{|F (Tx)| : x ∈ X,F ∈ Y ∗, ‖F‖ = ‖x‖ = 1}.

Proof of (b). If F ∈ X∗, ‖F‖ = 1, then |F (x)| ≤ ‖x‖. This implies
that sup |F (x)| ≤ ‖x‖. On the other hand, F0(cx) = c‖x‖ defines a
linear functional on the one-dimensional subspace L(x) that satisfies
|F0(y)| ≤ ‖y‖ for all y = cx ∈ L(x) (in fact, we have equality here).
By the Hahn-Banach Theorem, there exists an extension F ∈ X∗,
‖F‖ = 1 of F0; by construction, |F (x)| = ‖x‖, so sup |F (x)| ≥ ‖x‖.
This completes the proof, and, in fact, this argument has also shown
that the supremum is attained; it is a maximum. �

Exercise 4.1. Prove parts (a) and (c) of Corollary 4.2.

Let X be a Banach space. Since X∗ is a Banach space, too, we can
form its dual X∗∗ = (X∗)∗. We call X∗∗ the bidual or second dual of X.
We can identify the original space X with a closed subspace of X∗∗ in
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a natural way, as follows: Define a map j : X → X∗∗, j(x)(F ) = F (x)
(x ∈ X, F ∈ X∗). In other words, vectors x ∈ X act in a natural way
on functionals F ∈ X∗: we just evaluate F on x.

Proposition 4.3. We have j(x) ∈ X∗∗, and the map j is a (linear)
isometry. In particular, j(X) ⊆ X∗∗ is a closed subspace of X∗∗.

An operator I : X → Y is called an isometry if ‖Ix‖ = ‖x‖ for all
x ∈ X.

Exercise 4.2. (a) Show that an isometry I is always injective, that is,
N(I) = {0}.
(b) Show that S : `1 → `1, Sx = (0, x1, x2, . . .) is an isometry that is
not onto, that is R(S) 6= `1.

Proof. We will only check that j is an isometry and that j(X) is a
closed subspace.

Exercise 4.3. Prove the remaining statements from Proposition 4.3.
More specifically, prove that j(x) is a linear, bounded functional on X∗

for every x ∈ X, and prove that the map x 7→ j(x) is itself linear.

By the definition of the operator norm and Corollary 4.2(b), we have

‖j(x)‖ = sup{|j(x)(F )| : F ∈ X∗, ‖F‖ = 1}
= sup{|F (x)| : F ∈ X∗, ‖F‖ = 1} = ‖x‖,

so j indeed is an isometry. Clearly, j(X) is a subspace (being the image
of a linear map). If yn ∈ j(X), that is, yn = j(xn), and yn → y, then
also xn → x for some x ∈ X, because yn is a Cauchy sequence, and
since j preserves norms, so is xn. Since j is continuous, it follows that
j(x) = lim j(xn) = y, so y ∈ j(X). �

A linear isometry preserves all structures on a Banach space (the
vector space structure and the norm), and thus provides an identifi-
cation of its domain with its image. Using j and Proposition 4.3, we
can therefore think of X as a closed subspace of X∗∗. If, in this sense,
X = X∗∗, we call X reflexive. This really means that j(X) = X∗∗.
In particular, note that for X to be reflexive, it is not enough to ha-
ve X isometrically isomorphic to X∗∗; rather, we need this isometric
isomorphism to be specifically j.

We now use dual spaces to introduce new topologies on Banach
spaces. If T1, T2 are two topologies on a common space X, we say
that T1 is weaker than T2 (or T2 is stronger than T1) if T1 ⊆ T2. In
topology, coarse and fine mean the same thing as weak and strong,
respectively, but it would be uncommon to use these alternative terms
in functional analysis.
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Given a set X and a topological space (Y, T ) and a family F of maps
F : X → Y , there exists a weakest topology on X that makes all F ∈ F
continuous. Let us try to give a description of this topology (and, in
fact, we also need to show that such a topology exists). We will denote
it by Tw.

Clearly, we must have F−1(U) ∈ Tw for all F ∈ F , U ∈ T . Converse-
ly, any topology that contains these sets will make the F ’s continuous.
So we could stop here and say that Tw is the topology generated by
these sets. (Given any collection of sets, there always is a weakest to-
pology containing these sets.) However, we would like to be somewhat
more explicit. It is clear that finite intersections of sets of this type
have to be in Tw, too; in other words,

(4.2) {x ∈ X : F1(x) ∈ U1, . . . , Fn(x) ∈ Un}
belongs to Tw for arbitrary choices of n ∈ N, Fj ∈ F , Uj ∈ T . If these
sets are open, then arbitrary unions of such sets need to belong to Tw,
and, fortunately, the process stops here: we don’t get additional sets if
we now take finite intersections again. So the claim is that

(4.3) Tw = { arbitrary unions of sets of the type (4.2) }.
We must show that Tw is a topology; by its construction, any other
topology that makes all F ∈ F continuous must then be stronger than
Tw. This verification is quite straightforward, but a little tedious to
write down, so I’ll make this an exercise:

Exercise 4.4. Prove that (4.2), (4.3) define a topology.

We now apply this process to a Banach space X, with Y = C and
F = X∗. Of course, we already have a topology on X (the norm topolo-
gy); this new topology will be different, unless X is finite-dimensional.
Here’s the formal definition:

Definition 4.4. Let X be a Banach space. The weak topology on X is
defined as the weak topology Tw generated by X∗.

If we denote the norm topology by T , then, since all F ∈ X∗ are
continuous if we use T (by definition of X∗!), we see that Tw ⊆ T ; in
other words, the weak topology is weaker than the norm topology. By
the discussion above, (4.3) gives a description of Tw. A slightly more
convenient variant of this can be obtained by making use of the vector
space structure. First of all, the sets

(4.4) U(F1, . . . , Fn; ε1, . . . , εn) = {x ∈ X : |Fj(x)| < εj (j = 1, . . . , n)}
are in Tw for arbitrary n ∈ N, Fj ∈ X∗, εj > 0. In fact, they are of the
form (4.2), with Uj = {z : |z| < εj}. I now claim that V ∈ Tw if and
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only if for every x ∈ V , there exists a set U = U(Fj; εj) of this form
with x+ U ⊆ V .

Exercise 4.5. Prove this claim.

We can rephrase this as follows: The U ’s form a neighborhood base
at 0 (that is, any neighborhood of x = 0 contains some U) and the
neighborhoods of an arbitrary x ∈ X are precisely the translates x+W
of the neighborhoods W of 0.

We’ll make two more observations on the weak topology and then
leave the matter at that. First of all, Tw is a Hausdorff topology: If
x, y ∈ X, x 6= y, then there exist V,W ∈ Tw with x ∈ V , y ∈ W ,
V ∩W = ∅. To prove this, we use the fact that X∗ separates the points
of X; see Corollary 4.2(a). So there is an F ∈ X∗ with F (x) 6= F (y).
We can now take V = x+U(F ; ε), W = y+U(F ; ε) with a sufficiently
small ε > 0.

Exercise 4.6. Provide the details for this last step. You can (and should)
make use of the description of Tw established above, in Exercise 4.5.

Finally, if xn is a sequence from X, then xn → x in Tw (this is usually

written as xn
w−→ x; xn goes to x weakly) if and only if F (xn) → F (x)

for all F ∈ X∗.

Exercise 4.7. Prove this. Again, by the results of Exercise 4.5, xn
w−→ x

means that for every U of the form (4.4), we eventually have xn−x ∈ U .

This gives a characterization of convergent sequences and thus some
idea of what the topology does. However, it can happen that Tw is not
metrizable and then the topological notions (closed sets, compactness,
continuity etc.) can not be characterized using sequences.

Definition 4.5. Let X be a Banach space. The weak-∗ topology Tw∗

on X∗ is defined as the weak topology generated by X, viewed as a
subset of X∗∗. Put differently, Tw∗ is the weakest topology that turns all
point evaluations j(x) : X∗ → C, F 7→ F (x) (x ∈ X) into continuous
functions on X∗.

We have an analogous description of Tw∗ . The sets

U(x1, . . . , xn; ε1, . . . , εn) = {F ∈ X∗ : |F (xj)| < εj}
are open, and V ⊆ X∗ is open in the weak-∗ topology if and only for
every F ∈ V , there exists such a U so that F + U ⊆ V .

Exercise 4.8. Prove that Tw∗ is a Hausdorff topology. Hint: If F 6=
G, then F (x) 6= G(x) for some x ∈ X. Now you can build disjoint
neighborhoods of F , G as above, using this x; see also Exercise 4.6.
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Exercise 4.9. Let X be a Banach space, and let Fn, F ∈ X∗. Show that
Fn → F in the weak-∗ topology if and only if Fn(x) → F (x) for all
x ∈ X.

Since X∗ is a Banach space, we can also define a weak topology on
X∗. This is the topology generated by X∗∗. The weak-∗ topology is
generated by X, which in general is a smaller set of maps, so the weak-
∗ topology is weaker than the weak topology. It can only be defined on
a dual space. If X is reflexive, then there’s no difference between the
weak and weak-∗ topologies.

Despite its clumsy and artificial looking definition, the weak-∗ topo-
logy is actually an extremely useful tool. All the credit for this is due
to the following fundamental result.

Theorem 4.6 (Banach-Alaoglu). Let X be a Banach space. Then the
closed unit ball B1(0) = {F ∈ X∗ : ‖F‖ ≤ 1} is compact in the weak-∗
topology.

Proof. This will follow from Tychonoff’s Theorem: The product of com-
pact topological spaces is compact in the product topology. To get this
argument started, we look at the Cartesian product set

K =
∏
x∈X

{z ∈ C : |z| ≤ ‖x‖}.

As a set, this is defined as the set of maps F : X → C with |F (x)| ≤
‖x‖. The individual factors {|z| ≤ ‖x‖} come with a natural topology,
and we endow K with the product topology, which, by definition, is
the weak topology generated by the projections px : K → {|z| ≤ ‖x‖},
px(F ) = F (x) (equivalently, you can also produce it from cylinder sets,
if this is more familiar to you). By Tychonoff’s Theorem, K is compact.

Now B1(0) ⊆ K; more precisely, B1(0) consists of those maps F ∈ K
that are also linear. I now claim that the topology induced by K on
B1(0) is the same as the induced topology coming from the weak-∗
topology on X∗ ⊇ B1(0). This should not come as a surprise because
both the product topology and Tw∗ are weak topologies generated by
the point evaluations x 7→ F (x). Writing it down is a slightly unplea-
sant task that is best delegated to the reader.

Exercise 4.10. Show that K and (X∗, Tw∗) indeed induce the same
topology on B1(0). Come to think of it, we perhaps really want to
prove the following abstract fact: Let (Z, T ) be a topological space, F a
family of maps F : X → Z and let Y ⊆ X. Then we can form the weak
topology Tw on X; this induces a relative topology on Y . Alternatively,
we can restrict the maps F ∈ F to Y and let the restrictions generate
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a weak topology on Y . Prove that both methods lead to the same
topology. As usual, this is mainly a matter of unwrapping definitions.
You could use the description (4.2), (4.3) of the weak topologies and
look at what happens when these induce relative topologies.

Exercise 4.11. (a) Let Y be a compact topological space and let A ⊆ Y
be closed. Prove that then A is compact, too.
(b) Let Y be a topological space. Show that a subset B ⊆ Y is compact
if and only if B with the relative topology is a compact topological
space. (Sometimes compactness is defined in this way; recall that we
defined compact sets by using covers by open sets U ⊆ Y . It is now
in fact almost immediate that we get the same condition from both
variants, but this fact will be needed here, so I thought I’d point it
out.)

With these preparations out of the way, it now suffices to show that
B1(0) is closed in K. So let F ∈ K \ B1(0). We want to find a neigh-
borhood of F that is contained in K \ B1(0) (note that we cannot
use sequences here because there is no guarantee that our topologies
are metrizable). Since F /∈ B1(0), F is not linear and thus there are
c, d ∈ C, x, y ∈ X such that

ε ≡ |F (cx+ dy)− cF (x)− dF (y)| > 0.

But then

V =
{
G ∈ K : |G(cx+ dy)− F (cx+ dy)| < ε

3
,

|c| |G(x)− F (x)| < ε

3
, |d| |G(y)− F (y)| < ε

3

}
is an open set in K with F ∈ V , and if G ∈ V , then still

|G(cx+ dy)− cG(x)− dG(y)| > 0,

so V does not contain any linear maps and thus is the neighborhood
of F we wanted to find. �

We have already seen how the fact that Tw∗ need not be metrizable
makes this topology a bit awkward to deal with. The following result
provides some relief. We call a metric space X separable if X has a
countable dense subset (that is, there exist xn ∈ X such that if x ∈ X
and ε > 0 are arbitrary, then d(x, xn) < ε for some n ∈ N).

Exercise 4.12. (a) Show that `p (with index set N, as usual) is separable
for 1 ≤ p < ∞. You can use the result of Exercise 4.13 below if you
want.
(b) Show that `∞ is not separable. Suggestion: Consider all x ∈ `∞
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that only take the values 0 and 1. How big is this set? What can you
say about ‖x− x′‖ for two such sequences?

Exercise 4.13. Let X be a Banach space. Show that X will be separable
if there is a countable total subset, that is, if there is a countable set
M ⊆ X such that the (finite) linear combinations of elements from M
are dense in X (in other words, if x ∈ X and ε > 0, we must be able to

find mj ∈M and coefficients cj ∈ C such that
∥∥∥∑N

j=1 cjmj − x
∥∥∥ < ε.)

Theorem 4.7. If X is a separable Banach space, then the weak-∗ to-
pology on B1(0) ⊆ X∗ (more precisely: the relative topology induced by
Tw∗) is metrizable.

We don’t want to prove this in detail, but the basic idea is quite easy
to state. The formula

d(F,G) =
∞∑
n=1

2−n
|F (xn)−G(xn)|

1 + |F (xn)−G(xn)|

(say), where {xn} is a dense subset of X, defines a metric that generates
the desired topology.

Corollary 4.8. Let X be a separable Banach space. If Fn ∈ X∗,
‖Fn‖ ≤ 1, then there exist F ∈ X∗, ‖F‖ ≤ 1 and a subsequence
nj →∞ such that Fnj

(x)→ F (x) for all x ∈ X.

Proof. This follows by just putting things together. By the Banach-
Alaoglu Theorem, B1(0) is compact in the weak-∗ topology. By Theo-
rem 4.7, this can be thought of as a metric space. By Theorem 1.7(c),
compactness is therefore equivalent to sequences having convergent
subsequences. By using Exercise 4.9, we now obtain the claim. �

To make good use of the results of this chapter, we need to know what
the dual space of a given space is. We now investigate this question for
the Banach spaces from our list that was compiled in Chapter 2.

Example 4.1. If X = Cn with some norm, then Corollary 2.16 implies
that all linear functionals on X are bounded, so in this case X∗ coin-
cides with the algebraic dual space. From linear algebra we know that
as a vector space, X∗ can be identified with Cn again; more precisely,
y ∈ Cn can be identified with the functional x 7→

∑n
j=1 yjxj. It also

follows from this that X is reflexive. The norm on X∗ depends on the
norm on X; Example 4.3 below will throw some additional light on
this.

Exercise 4.14. Show that the weak topology on X = Cn coincides with
the norm topology. Suggestion: It essentially suffices to check that open
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balls Br(0) (say) are in Tw. Show this and then use the definition of
the norm topology T to show that T ⊆ Tw. Since always Tw ⊆ T , this
will finish the proof.

This Exercise says that we really don’t get anything new from the
theory of this chapter on finite-dimensional spaces; recall also in this
context that Tw = Tw∗ on Cn, thought of as the dual space X∗ of
X = Cn, because X is reflexive.

Example 4.2. Let K be a compact Hausdorff space and consider the
Banach space C(K). Then C(K)∗ = M(K), where M(K) is defined
as the space of all complex, regular Borel measures on K. Here, we call
a (complex) measure µ (inner and outer) regular if its total variation
ν = |µ| is regular in the sense that

ν(B) = sup
L⊆B:L compact

ν(L) = inf
U⊇B:U open

ν(U)

for all Borel sets B ⊆ K. M(K) becomes a vector space if the vector
space operations are introduced in the obvious way as (µ + ν)(B) =
µ(B) + ν(B), (cµ)(B) = cµ(B). In fact, M(K), equipped with the
norm

(4.5) ‖µ‖ = |µ|(K),

is a Banach space. This is perhaps most elegantly deduced from the
main assertion of this Example, namely the fact that C(K)∗ can be
identified with M(K), and, as we will see in a moment, the operator
norm onM(K) = C(K)∗ turns out to be exactly (4.5). More precisely,
the claim is that every µ ∈ M(K) generates a functional Fµ ∈ C(K)∗

via

(4.6) Fµ(f) =

∫
K

f(x) dµ(x),

and we also claim that the corresponding map M(K) → C(K)∗,
µ 7→ Fµ is an isomorphism between Banach spaces (in other words,
a bijective, linear isometry).

The Riesz Representation Theorem does the lion’s share of the work
here; it implies that µ 7→ Fµ is a bijection from M(K) onto C(K)∗;
see for example, Folland, Real Analysis, Corollary 7.18. It is also clear
that this map is linear.

Exercise 4.15. Suppose we introduce a norm onM(K) by just declaring
‖µ‖ = ‖Fµ‖ (operator norm), that is, we just move the norm on C(K)∗

over toM(K). Show that this leads to (4.5); put differently, show that
the operator norm of Fµ from (4.6) equals |µ|(K).
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One pleasing consequence of this identification of C(K)∗ asM(K) is
the fact that this latter space, being a dual space, can now be equipped
with a weak-∗ topology. This, in turn, has implications of the following
type:

Exercise 4.16. Show that C[a, b] (soK = [a, b], with the usual topology)
is separable. Suggestion: Deduce this from the Weierstraß approxima-
tion theorem.

Exercise 4.17. Let µn be a sequence of complex Borel measures on [a, b]
with |µn|([a, b]) ≤ 1 (in particular, these could be arbitrary positive
measures with µn([a, b]) ≤ 1). Show that there exists another Borel
measure µ on [a, b] with |µ|([a, b]) ≤ 1 and a subsequence nj such that

lim
j→∞

∫
[a,b]

f(x) dµnj
(x) =

∫
[a,b]

f(x) dµ(x)

for all f ∈ C[a, b].
Hint: This in fact follows quickly from Corollary 4.8 and Exercise

4.16.

Example 4.3. We now move on to `p spaces. We first claim that if
1 ≤ p < ∞, then (`p)∗ = `q, where 1/p + 1/q = 1. More precisely, the
claim really is that every y ∈ `q generates a functional Fy ∈ (`p)∗, as
follows:

(4.7) Fy(x) =
∞∑
j=1

yjxj

Moreover, the corresponding map y 7→ Fy is an isomorphism between
the Banach spaces `q and (`p)∗.

Let us now prove these assertions. First of all, Hölder’s inequali-
ty shows that the series from (4.7) converges, and in fact |Fy(x)| ≤
‖y‖q‖x‖p. Since (4.7) is also obviously linear in x, this shows that
Fy ∈ (`p)∗ and ‖Fy‖ ≤ ‖y‖q. We will now explicitly discuss only the
case 1 < p < ∞. If p = 1 (and thus q = ∞), the same basic strat-
egy works and actually the technical details get easier, but some slight
adjustments are necessary.

To compute ‖Fy‖, we set

(4.8) xn =

{
|yn|q
yn

n ≤ N, yn 6= 0

0 else
,

with N ∈ N. It is then clear that x ∈ `p,

‖x‖pp =
N∑
n=1

|yn|(q−1)p =
N∑
n=1

|yn|q,
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and thus

Fy(x) =
N∑
n=1

|yn|q =

(
N∑
n=1

|yn|q
)1/q

‖x‖p.

Thus ‖Fy‖ ≥
(∑N

n=1 |yn|q
)1/q

, and this holds for arbitrary N ∈ N,

so it follows that ‖Fy‖ ≥ ‖y‖q, so ‖Fy‖ = ‖y‖q. This says that the
identification y 7→ Fy is isometric, and it is obviously linear (in y!), so
it remains to show that it is surjective, that is, every F ∈ (`p)∗ equals
some Fy for suitable y ∈ `q. To prove this, fix F ∈ (`p)∗. It is clear from
(4.7) that only yn = F (en) can work, so define a sequence y in this way
(here, en(j) = 1 if j = n and en(j) = 0 otherwise). Consider again the
x ∈ `p from (4.8). Then

F (x) = F

(
N∑
n=1

|yn|q

yn
en

)
=

N∑
n=1

|yn|q.

As above, ‖x‖p =
(∑N

n=1 |yn|q
)1/p

, so

N∑
n=1

|yn|q ≤ ‖F‖

(
N∑
n=1

|yn|q
)1/p

or
(∑N

n=1 |yn|q
)1/q

≤ ‖F‖. Again, N is arbitrary here, so y ∈ `q. By

construction of y, we have F (z) = Fy(z) if z is a finite linear com-
bination of the en’s. These vectors z, however, are dense in `p, so it
follows from the continuity of both F and Fy that F (w) = Fy(w) for
all w ∈ `p; in other words, F = Fy.

As a consequence, `p is reflexive for 1 < p < ∞, basically because
(`p)∗∗ = (`q)∗ = `p, by applying the above result on the dual of `r twice.

Exercise 4.18. Give a careful version of this argument, where the identi-
fication j : X → X∗∗ from the definition of reflexivity is taken seriously.

We can’t be sure about `1 and `∞ at this point because we don’t know
yet what (`∞)∗ is. It will turn out that these spaces are not reflexive.

Example 4.4. Similar discussions let us identify the duals of c0 and c.
We claim that c∗0 = `1 = `1(N) and c∗ = `1(N0); as usual, we really mean
that there are Banach space isomorphisms (linear, bijective isometries)
y 7→ Fy that provide identifications between these spaces. We can make
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this more explicit:

Fy(x) =
∞∑
j=1

yjxj (y ∈ `1(N), x ∈ c0),

Fy(x) = y0 ·
(

lim
n→∞

xn

)
+
∞∑
j=1

yj

(
xj − lim

n→∞
xn

)
(y ∈ `1(N0), x ∈ c)

Since this discussion is reasonably close to Example 4.3, I don’t want
to do it here. The above representations of the dual spaces as `1(N) and
`1(N0) seem natural, especially since c = c0+̇L(e), with e = (1, 1, 1, . . .).
This then also allows us to similarly identify c∗0 with a codimension 1
subspace M of c∗; we can see this in abstract style by taking M =
{F ∈ c∗ : F (e) = 0} (and a careful proof would use the Hahn-Banach
theorem). However, it is of course easier to read it off from the above
representation of the dual spaces as `1(N) and `1(N0), respectively.

On the other hand, `1(N) and `1(N0) are of course isometrically iso-
morphic as Banach spaces: the map (yn)n≥1 7→ (yn+1)n≥0 is an isometry.
The most interesting aspect of this is that c 6∼= c0; this can be seen by
considering extreme points of the closed unit ball in both spaces. So
the space can not, in general, be recovered from its dual.

Example 4.5. We now discuss (`∞)∗. We will obtain an explicit looking
description of this dual space, too, but, actually, this result will not
be very useful. This is so because the objects that we will obtain are
not particularly well-behaved and there is no well developed machinery
that would recommend them for further use.

It will turn out that (`∞)∗ =Mfa(N), the space of bounded, finitely
additive set functions on N. More precisely, the elements of Mfa(N)
are set functions µ : P(N) → C that satisfy supM⊆N |µ(M)| < ∞ and
if M1,M2 ⊆ N are disjoint, then µ(M1 ∪M2) = µ(M1) + µ(M2). Note
that the complex measures on the σ-algebra P(N) are precisely those
µ ∈Mfa(N) that are σ-additive rather than just finitely additive.

Finitely additive bounded set functions will act on vectors x ∈ `∞
by an integration of sorts. We discuss this new integral first (as far
as I can see, this integral does not play any major role in analysis
except in this particular context). Let x ∈ `∞. We subdivide the disk
{z ∈ C : |z| ≤ ‖x‖} into squares (say) Qj, and we fix a number zj ∈ Qj

from each square. Let Mj = {n ∈ N : xn ∈ Qj} be the inverse image
under xn. It’s quite easy to check that for µ ∈ Mfa(N), the sums∑
zjµ(Mj) will approach a limit as the subdivision gets finer and finer,

and this limit is independent of the choice of the Qj and zj. We call
this limit the Radon integral of xn with respect to µ, and we denote it
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by

R−
∫
N
xn dµ(n).

Next, we show how to associate a set function µ ∈ Mfa(N) with a
given functional F ∈ (`∞)∗. Define µ(M) = F (χM) (M ⊆ N). Then
|µ(M)| ≤ ‖F‖ ‖χM‖ ≤ ‖F‖, so µ is a bounded set function. Also, if
M1 ∩M2 = ∅, then

µ(M1 ∪M2) = F (χM1∪M2) = F (χM1 + χM2)

= F (χM1) + F (χM2) = µ(M1) + µ(M2).

Thus µ ∈ Mfa(N). Moreover, if squares Qj and points zj ∈ Qj are
chosen as above and if we again set Mj = {n ∈ N : xn ∈ Qj}, then∥∥x−∑ zjχMj

∥∥ is bounded by the maximal diameter of the Qj’s, so this
will go to zero if we again consider a sequence of subdivisions becoming
arbitrarily fine. It follows that

F (x) = limF
(∑

zjχMj

)
= lim

∑
zjµ(Mj) = R−

∫
N
xn dµ(n).

Conclusion: Every F ∈ (`∞)∗ can be represented as a Radon integral.
Conversely, one can show that every µ ∈Mfa(N) generates a functional
Fµ on `∞ by Radon integration:

Fµ(x) = R−
∫
N
xn dµ(n)

(The boundedness of Fµ requires some work; Exercise 4.19 below should
help to clarify things.)

We obtain a bijection Mfa(N) → (`∞)∗, µ 7→ Fµ, and, as in the
previous examples, it’s now a relatively easy matter to check that this
actually sets up an isometric isomorphism between Banach spaces if we
endowMfa(N) with the natural vectors space structure ((µ+ν)(M) :=
µ(M) + ν(N) etc.) and the norm

‖µ‖ = sup
‖x‖=1

∣∣∣∣R− ∫
N
xn dµ(n)

∣∣∣∣ .
I’ll leave the details of these final steps to the reader.

Exercise 4.19. Show that ‖µ‖ = sup
∑
|µ(Mj)|, where the supremum is

over all partitions of N into finitely many sets M1, . . . ,MN . Moreover,
∞∑
n=1

|µ ({n})| ≤ ‖µ‖;

can you also show that strict inequality is possible? (Exercise 4.21 might
be helpful here.)
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Exercise 4.20. Show that `1 ⊆Mfa(N) in the sense that if y ∈ `1, then
µ(M) =

∑
n∈M yn defines a bounded, finitely additive set function and

‖µ‖ = ‖y‖1. Show that in fact these µ’s are exactly the (complex)
measures on (N,P(N)).

Remark: Since X can be identified with a subspace of X∗∗ for any
Banach space X and since `∞ = (`1)∗, we knew right away that `1 ⊆
(`∞)∗, provided this is suitably interpreted.

Exercise 4.21. The fact that `1 $ (`∞)∗ can also be seen more directly,
without giving a description of (`∞)∗, as follows:
(a) Show that every y ∈ `1 generates a functional Fy ∈ (`∞)∗ by letting

(4.9) Fy(x) =
∞∑
n=1

ynxn (x ∈ `∞).

(b) Show that not every F ∈ (`∞)∗ is of this form, by using the Hahn-
Banach Theorem. More specifically, choose a subspace Y ⊆ `∞ and
define a bounded functional F0 on Y in such a way that no extension
F of F0 can be of the form (4.9). (This is an uncomplicated argument
if done efficiently; it all depends on a smart choice of Y and F0.)

Example 4.6. I’ll quickly report on the spaces Lp(X,µ) here. The si-
tuation is similar to the discussion above; see Examples 4.3, 4.5. If
1 ≤ p < ∞, then (Lp)∗ = Lq, where 1/p + 1/q = 1. This holds in
complete generality for 1 < p < ∞, but if p = 1, then we need the
additional hypothesis that µ is σ-finite (which means that X can be
written as a countable union of sets of finite measure). Again, this is an
abbreviated way of stating the result; it really involves an identification
of Banach spaces: the function f ∈ Lq is identified with the functional
Ff ∈ (Lp)∗ defined by Ff (g) =

∫
X
fg dµ.

(L∞)∗ is again a complicated space that can be described as a space of
finitely additive set functions, but this description is only moderately
useful. In particular, except in special cases, (L∞)∗ is (much) bigger
than L1. In fact, for example L1(R,m) is not the dual space of any
Banach space: there is no Banach space X for which X∗ is isometrically
isomorphic to L1(R,m)!

Exercise 4.22. What is wrong with the following sketch of a “proof”
that (`∞)∗ = `1:

Follow the strategy from Example 4.3. Obviously, if y ∈ `1, then
Fy ∈ (`∞)∗, if Fy is defined as in (4.7). Conversely, given an F ∈ (`∞)∗,
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let yn = F (en). Define x ∈ `∞ by

xn =

{
|yn|
yn

n ≤ N, yn 6= 0

0 otherwise
.

Then ‖x‖∞ ≤ 1, so F (x) =
∑N

n=1 |yn| ≤ ‖F‖, and it follows that y ∈ `1.
By construction, F = Fy.

Exercise 4.23. Let X be a Banach space. Show that every weakly con-
vergent sequence is bounded: If xn, x ∈ X, F (xn) → F (x) for all
F ∈ X∗, then sup ‖xn‖ <∞.

Hint: Think of the xn as elements of the bidual X∗∗ ⊇ X and apply
the uniform boundedness principle.

Exercise 4.24. (a) Show that en
w−→ 0 in `2.

(b) Construct a sequence fn with similar properties in C[0, 1]: we want

‖fn‖ = 1, fn
w−→ 0.


