
2. Banach spaces

Let X be a complex vector space. So the elements of X (“vectors”)
can be added and multiplied by complex numbers (“scalars”), and these
operations obey the usual algebraic rules.

Definition 2.1. A map ‖ · ‖ : X → [0,∞) is called a norm (on X) if
it has the following properties for arbitrary x, y ∈ X, c ∈ C:

(1) ‖x‖ = 0 ⇐⇒ x = 0
(2) ‖cx‖ = |c| ‖x‖
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

We may interpret a given norm as assigning a length to a vector.
Property (3) is again called the triangle inequality. It has a similar
interpretation as in the case of a metric space. A vector space with a
norm defined on it is called a normed space.

If (X, ‖·‖) is a normed space, then d(x, y) := ‖x−y‖ defines a metric
on X.

Exercise 2.1. Prove this remark.

Therefore, all concepts and results from Chapter 1 apply to normed
spaces also. In particular, a norm generates a topology on X. We
repeat here some of the most basic notions: A sequence xn ∈ X is
said to converge to x ∈ X if ‖xn − x‖ → 0 (note that these norms
form a sequence of numbers, so it’s clear how to interpret this latter
convergence). We call xn a Cauchy sequence if ‖xm − xn‖ → 0 as
m,n→∞. The open ball of radius r > 0 about x ∈ X is defined as

Br(x) = {y ∈ X : ‖y − x‖ < r}.
This set is indeed open in the topology mentioned above; more gen-
erally, an arbitrary set U ⊆ X is open precisely if for every x ∈ U ,
there exists an r = r(x) > 0 so that Br(x) ⊆ U . Finally, recall that a
space is called complete if every Cauchy sequence converges. Complete
normed spaces are particularly important; for easier reference, they get
a special name:

Definition 2.2. A Banach space is a complete normed space.

The following basic properties of norms are relatively direct con-
sequences of the definition, but they are extremely important when
working on normed spaces.

Exercise 2.2. (a) Prove the second triangle inequality:∣∣ ‖x‖ − ‖y‖ ∣∣ ≤ ‖x− y‖
12
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(b) Prove that the norm is a continuous map X → R; put differently,
if xn → x, then also ‖xn‖ → ‖x‖.

Exercise 2.3. Prove that the vector space operations are continuous.
In other words, if xn → x and yn → y (and c ∈ C), then also xn+yn →
x+ y and cxn → cx.

Let’s now collect some examples of Banach spaces. It turns out that
most of the examples for metric spaces that we considered in Chapter
1 actually have a natural vector space structure and the metric comes
from a norm.

Example 2.1. The simplest vector spaces are the finite-dimensional
spaces. Every n-dimensional (complex) vector space is isomorphic to
Cn, so it will suffice to consider X = Cn. We would like to define norms
on this space, and we can in fact turn to Example 1.3 for inspiration.
For x = (x1, . . . , xn) ∈ X, let

(2.1) ‖x‖p =

(
n∑
j=1

|xj|p
)1/p

,

for 1 ≤ p <∞, and

(2.2) ‖x‖∞ = max
j=1,...,n

|xj|.

I claim that this defines a family of norms (one for each p, 1 ≤ p ≤
∞), but we will not prove this in this setting. Rather, we will right
away prove a more general statement in Example 2.2 below. (Only the
triangle inequality for 1 < p < ∞ needs serious proof; everything else
is fairly easy to check here anyway.)

Example 2.2. We now consider infinite-dimensional versions of the Ba-
nach spaces from the previous example. Instead of finite-dimensional
vectors (x1, . . . , xn), we now want to work with infinite sequences x =
(x1, x2, . . .), and we want to continue to use (2.1), (2.2), or at least
something similar. We first of all introduce the maximal spaces on
which these formulae seem to make sense. Let

`p =

{
x = (xn)n≥1 :

∞∑
n=1

|xn|p <∞

}
(for 1 ≤ p <∞) and

`∞ =

{
x = (xn)n≥1 : sup

n≥1
|xn| <∞

}
.
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Then, as expected, for x ∈ `p, define

‖x‖p =

(
∞∑
n=1

|xn|p
)1/p

(p <∞),

‖x‖∞ = sup
n≥1
|xn|.

Proposition 2.3. `p is a Banach space for 1 ≤ p ≤ ∞.

Here, the algebraic operations on `p are defined in the obvious way:
we perform them componentwise; for example, x + y is the sequence
whose nth element is xn + yn.

Proof. We will explicitly prove this only for 1 < p < ∞; the cases
p = 1, p = ∞ are easier and can be handled by direct arguments.
First of all, we must check that `p is a vector space. Clearly, if x ∈ `p
and c ∈ C, then also cx ∈ `p. Moreover, if x, y ∈ `p, then, since
|xn + yn|p ≤ (2|xn|)p + (2|yn|)p, we also have x + y ∈ `p. So addition
and multiplication by scalars can be defined on all of `p, and it is
clear that the required algebraic laws hold because all calculations are
performed on individual components, so we just inherit the usual rules
from C.

Next, we verify that ‖ · ‖p is a norm on `p. Properties (1), (2) from
Definition 2.1 are obvious. The proof of the triangle inequality will
depend on the following very important inequality:

Theorem 2.4 (Hölder’s inequality). Let x ∈ `p, y ∈ `q, where p, q
satisfy

1

p
+

1

q
= 1

(1/0 :=∞, 1/∞ := 0 in this context). Then xy ∈ `1 and

‖xy‖1 ≤ ‖x‖p‖y‖q.

Proof of Theorem 2.4. Again, we focus on the case 1 < p <∞; if p = 1
or p =∞, an uncomplicated direct argument is available.

The function lnx is concave, that is, the graph lies above line seg-
ments connecting any two of its points (formally, this follows from
the fact that (lnx)′′ = −1/x2 < 0). In other words, if a, b > 0 and
0 ≤ α ≤ 1, then

α ln a+ (1− α) ln b ≤ ln (αa+ (1− α)b) .

We apply the exponential function on both sides and obtain aαb1−α ≤
αa+ (1−α)b. If we introduce the new variables c, d by writing a = cp,
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b = dq, with 1/p = α (so 1/q = 1− α), then this becomes

(2.3) cd ≤ cp

p
+
dq

q
.

This holds for all c, d ≥ 0 (the original argument is valid only if c, d > 0,
but of course (2.3) is trivially true if c = 0 or d = 0). In particular, we
can use (2.3) with c = |xn|/‖x‖p, d = |yn|/‖y‖q (at least if ‖x‖p, ‖y‖q 6=
0, but if that fails, then the claim is trivial anyway) and then sum over
n ≥ 1. This shows that

∞∑
n=1

|xnyn|
‖x‖p‖y‖q

≤
∞∑
n=1

|xn|p

p‖x‖pp
+
∞∑
n=1

|yn|q

q‖y‖qq
=

1

p
+

1

q
= 1,

so xy ∈ `1, as claimed, and we obtain Hölder’s inequality. �

We are now in a position to establish the triangle inequality on `p:

Theorem 2.5 (Minkowski’s inequality = triangle inequality on `p).
Let x, y ∈ `p. Then x+ y ∈ `p and

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Proof of Theorem 2.5. Again, we will discuss explicitly only the case
1 < p <∞. We already know that x+y ∈ `p. Hölder’s inequality with
the given p (and thus q = p/(p− 1)) shows that

‖x+ y‖pp =
∑
|xn + yn|p =

∑
|xn + yn| |xn + yn|p−1

≤
∑
|xn| |xn + yn|p−1 +

∑
|yn| |xn + yn|p−1

≤ (‖x‖p + ‖y‖p) ‖x+ y‖p−1p .

If x+y 6= 0, we can divide by ‖x+y‖p−1p to obtain the desired inequality,
and if x+ y = 0, then the claim is trivial. �

It remains to show that `p is complete. So let x(n) ∈ `p be a Cauchy
sequence (since the elements of `p are themselves sequences, we really
have a sequence whose members are sequences; we use a superscript
to label the elements of the Cauchy sequence from X = `p to avoid
confusion with the index labeling the components of a fixed element of
`p). Clearly, ∣∣∣x(m)

j − x(m)
j

∣∣∣p ≤ ‖x(m) − x(n)‖pp

for each fixed j ≥ 1, so
(
x
(n)
j

)
n≥1

is a Cauchy sequence of complex

numbers. Now C is complete, so these sequences have limits in C.
Define

xj = lim
n→∞

x
(n)
j .



16 Christian Remling

I claim that x = (xj) ∈ `p and x(n) → x in the norm of `p. To verify
that x ∈ `p, we observe that for arbitrary N ∈ N,

N∑
j=1

|xj|p = lim
n→∞

N∑
j=1

∣∣∣x(n)j

∣∣∣p ≤ lim sup
n→∞

‖x(n)‖p.

Exercise 2.4. Let xn ∈ X be Cauchy sequence in a normed space X.
Prove that xn is bounded in the following sense: There exists C > 0
such that ‖xn‖ ≤ C for all n ≥ 1.

Exercise 2.4 now shows that

N∑
j=1

|xj|p ≤ C

for some fixed, N independent constant C, so x ∈ `p, as required.
It remains to show that ‖x(n)−x‖p → 0. Let ε > 0 be given and pick

N0 ∈ N so large that ‖x(n) − x(m)‖ < ε if m,n ≥ N0 (this is possible
because x(n) is a Cauchy sequence). Then, for fixed N ∈ N, we have

N∑
j=1

∣∣∣x(n)j − xj
∣∣∣p = lim

m→∞

N∑
j=1

∣∣∣x(n)j − x
(m)
j

∣∣∣p ≤ ε

if n ≥ N0. SinceN ∈ N was arbitrary, it also follows that ‖x(n)−x‖pp ≤ ε
for n ≥ N0. �

Similar spaces can be defined for arbitrary index sets I instead of N.
For example, by definition, the elements of `p(I) are complex valued
functions x : I → C with

(2.4)
∑
j∈I

|xj|p <∞.

If I is uncountable, this sum needs interpretation. We can do this by
hand, as follows: (2.4) means that xj 6= 0 only for countably many
j ∈ I, and the corresponding sum is finite. Equivalently, but more
elegantly, we can also use the counting measure on I and interpret the
sum as an integral.

If we want to emphasize the fact that we’re using N as the index
set, we can also denote the spaces discussed above by `p(N). When no
confusion has to be feared, we will usually prefer the shorter notation
`p. We can also consider finite index sets I = {1, 2, . . . , n}. We have
`p({1, 2, . . . , n}) = Cn as a set, and the norms on these spaces are the
ones that were already introduced in Example 2.1 above.



Banach spaces 17

Example 2.3. Two more spaces of sequences are in common use. In
both cases, the index set is usually N (or sometimes Z). Put

c =
{
x : lim

n→∞
xn exists

}
,

c0 =
{
x : lim

n→∞
xn = 0

}
.

It is clear that c0 ⊆ c ⊆ `∞. In fact, more is true: the smaller spaces
are (algebraic linear) subspaces of the bigger spaces. On c and c0, we
also use the norm ‖ · ‖∞ (as on the big space `∞).

Proposition 2.6. c and c0 are Banach spaces.

Proof. We can make use of the observation made above, that c0 ⊆ c ⊆
`∞ and then refer to the following fact:

Proposition 2.7. Let (X, ‖ · ‖) be a Banach space, and let Y ⊆ X.
Then (Y, ‖ · ‖) is a Banach space if and only if Y is a closed (linear)
subspace of X.

Exercise 2.5. Prove Proposition 2.7. Recall that on metric (and thus
also normed and Banach) spaces, you can use sequences to character-
ize topological notions. So a subset is closed precisely if all limits of
convergent sequences from the set lie in the set again.

Since c and c0 are obviously (linear) subspaces of `∞, we now only
need to show that these spaces are closed subsets of `∞.

Exercise 2.6. Complete the proof of Proposition 2.6 along these lines.

�

Example 2.4. Function spaces provide another very important class
of Banach spaces. The discussion is in large parts analogous to our
treatment of sequence spaces (Examples 2.2, 2.3); sometimes, sequence
spaces are somewhat more convenient to deal with and, as we will see
in a moment, they can actually be interpreted as function spaces of a
particular type.

Let (X,M, µ) be a measure space (with a positive measure µ). The
discussion is most conveniently done in this completely general setting,
but if you prefer a more concrete example, you could think of X = Rn

with Lebesgue measure, as what is probably the most important special
case.

If we recall what we did above, then it seems natural to introduce
(for 1 ≤ p <∞)

Lp(X,µ) =

{
f : X → C : f measurable,

∫
X

|f(x)|p dµ(x) <∞
}
.
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Note that this set also depends on the σ-algebra M, but this depen-
dence is not made explicit in the notation. We would then like to
define

‖f‖p =

(∫
X

|f |p dµ
)1/p

.

This, however, does not give a norm in general because ‖f‖p = 0
precisely if f = 0 almost everywhere, so usually there will be functions
of zero “norm” that are not identically equal to zero. Fortunately,
there is an easy fix for this problem: we simply identify functions that
agree almost everywhere. More formally, we introduce an equivalence
relation on Lp, as follows:

f ∼ g ⇐⇒ f(x) = g(x) for µ-almost every x ∈ X
We then let Lp be the set of equivalence classes:

Lp(X,µ) = {(f) : f ∈ Lp(X,µ)} ,
where (f) = {g ∈ Lp : g ∼ f}. We obtain a vector space structure
on Lp in the obvious way; for example, (f) + (g) := (f + g) (it needs
to be checked here that the equivalence class on the right-hand side is
independent of the choice of representatives f , g, but this is obvious
from the definitions). Moreover, we can put

‖(f)‖p := ‖f‖p;

again, it doesn’t matter which function from (f) we take on the right-
hand side, so this is well defined.

In the same spirit (“ignore what happens on null sets”), we define

L∞(X,µ) = {f : X → C : f essentially bounded}.
A function f is called essentially bounded if there is a null set N ⊆ X
such that |f(x)| ≤ C for x ∈ X \ N . Such a C is called an essential
bound. If f is essentially bounded, its essential supremum is defined as
the best essential bound:

ess sup |f(x)| = inf
N :µ(N)=0

sup
x∈X\N

|f(x)|

= inf{C ≥ 0 : µ({x ∈ X : |f(x)| > C}) = 0}

Exercise 2.7. (a) Prove that both formulae give the same result.
(b) Prove that ess sup |f | is itself an essential bound: |f | ≤ ess sup |f |
almost everywhere.

Finally, we again let

L∞ = {(f) : f ∈ L∞} ,
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and we put
‖(f)‖∞ = ess sup |f(x)|.

Strictly speaking, the elements of the spaces Lp are not functions, but
equivalence classes of functions. Sometimes, it is important to keep this
distinction in mind; for example, it doesn’t make sense to talk about
f(0) for an (f) ∈ L1(R,m), say, because m({0}) = 0, so we can change
f at x = 0 without leaving the equivalence class (f). However, for
most purposes, no damage is done if, for convenience and as a figure of
speech, we simply refer to the elements of Lp as “functions” anyway (as
in “let f be a function from L1”, rather than the pedantic and clumsy
“let F be an element of L1 and pick a function f ∈ L1 that represents
the equivalence class F”). This convention is in universal use (it is
similar to, say, “right lane must exit”).

Proposition 2.8. Lp(X,µ) is a Banach space for 1 ≤ p ≤ ∞.

We will not give the complete proof of this because the discussion
is reasonably close to our previous treatment of `p. Again, the two
main issues are the triangle inequality and completeness. The proof
of the triangle inequality follows the pattern of the above proof very
closely. To establish completeness, we (unsurprisingly) need facts from
the theory of the Lebesgue integral, so this gives us a good opportunity
to review some of these tools. We will give this proof only for p = 1
(1 < p < ∞ is similar, and p = ∞ can again be handled by a rather
direct argument).

So let fn ∈ L1 be a Cauchy sequence. Pick a subsequence nk → ∞
so that ‖fnk+1

− fnk
‖ < 2−k.

Exercise 2.8. Prove that nk’s with these properties can indeed be found.

Let

Sj(x) =

j∑
k=1

∣∣fnk+1
(x)− fnk

(x)
∣∣ .

Then Sj is measurable, non-negative, and Sj+1 ≥ Sj. So, if we let
S(x) = limj→∞ Sj(x) ∈ [0,∞], then the Monotone Convergence Theo-
rem shows that∫

X

S dµ = lim
j→∞

∫
X

Sj dµ = lim
j→∞

j∑
k=1

∫
X

∣∣fnk+1
− fnk

∣∣ dµ
= lim

j→∞

j∑
k=1

∥∥fnk+1
− fnk

∥∥ < ∞∑
k=1

2−k = 1.

In particular, S ∈ L1, and this implies that S <∞ almost everywhere.
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The same conclusion can be obtained from Fatou’s Lemma; let us
do this too, for review purposes:∫

X

S dµ =

∫
X

lim
j→∞

Sj dµ =

∫
X

lim inf
j→∞

Sj dµ ≤ lim inf
j→∞

∫
X

Sj dµ

We can conclude the argument as in the preceding paragraph, and we
again see that

∫
S < 1, so S <∞ almost everywhere.

For almost every x ∈ X, we can define

f(x) := fn1(x) +
∞∑
k=1

(
fnk+1

(x)− fnk
(x)
)

;

indeed, we just verified that this series actually converges absolutely
for almost every x ∈ X. Moreover, the sum is telescoping, so in fact

f(x) = lim
j→∞

fnj
(x)

for a.e. x. Also,∣∣f(x)− fnj
(x)
∣∣ ≤ ∞∑

k=j

∣∣fnk+1
(x)− fnk

(x)
∣∣ .

Since this latter sum is dominated by S ∈ L1, this shows, first of all,
that |f−fnj

| ∈ L1 and thus also f ∈ L1 (because |f | ≤ |fnj
|+|f−fnj

|).
Moreover, the functions |f − fnj

| satisfy the hypotheses of Dominated
Convergence, and thus

lim
j→∞

∫
X

∣∣f − fnj

∣∣ dµ = 0.

To summarize: given the Cauchy sequence fn ∈ L1, we have con-
structed a function f ∈ L1, and ‖fnj

− f‖ → 0. This is almost what
we set out to prove. For the final step, we can refer to the following
general fact.

Exercise 2.9. Let xn be a Cauchy sequence from a metric space Y .
Suppose that xnj

→ x for some subsequence (and some x ∈ Y ). Prove
that then in fact xn → x.

We also saw in this proof that fnj
→ f pointwise almost everywhere.

This is an extremely useful fact, so it’s a good idea to state it again
(for general p).

Corollary 2.9. If ‖fn − f‖p → 0, then there exists a subsequence fnj

that converges to f pointwise almost everywhere.

Exercise 2.10. Give a (short) direct argument for the case p = ∞.
Show that in this case, it is not necessary to pass to a subsequence.
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If I is an arbitrary set (the case I = N is of particular interest here),
M = P(I) and µ is the counting measure on I (so µ(A) equals the
number of elements of A), then Lp(I, µ) is the space `p(I) that was
discussed earlier, in Example 2.2. Note that on this measure space, the
only null set is the empty set, so there’s no difference between Lp and
Lp here.

Example 2.5. Our final example can perhaps be viewed as a mere vari-
ant of L∞, but this space will become very important for us later on.
We start out with a compact Hausdorff space K. A popular choice
would be K = [a, b], with the usual topology, but the general case will
also be needed. We now consider

C(K) = {f : K → C : f continuous },

with the norm

‖f‖ = ‖f‖∞ = max
x∈K
|f(x)|.

The maximum exists because |f |(K), being a continuous image of a
compact space, is a compact subset of R. As anticipated, we then have
the following:

Proposition 2.10. ‖ · ‖∞ is a norm on C(K), and C(K) with this
norm is a Banach space.

The proof is very similar to the corresponding discussion of L∞; I
don’t want to discuss it in detail here. In fact, if there is a measure
on K that gives positive weight to all non-empty open sets (such as
Lebesgue measure on [a, b]), then C(K) can be thought of as a subspace
of L∞.

Exercise 2.11. Can you imagine why we want the measure to give pos-
itive weight to open sets?

Hint: Note that the elements of C(K) are genuine functions, while
the elements of L∞(K,µ) were defined as equivalence classes of func-
tions, so if we want to think of C(K) as a subset of L∞, we need a way
to identify continuous functions with equivalence classes.

Exercise 2.12. Prove that C(K) is complete.

In the sequel, we will be interested mainly in linear maps between
Banach spaces (and not so much in the spaces themselves). More
generally, let X, Y be normed spaces. Recall that a map A : X → Y is
called linear if A(x1+x2) = Ax1+Ax2 and A(cx) = cAx. In functional
analysis, we usually refer to linear maps as (linear) operators. The null
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space (or kernel) and the range (or image) of an operator A are defined
as follows:

N(A) = {x ∈ X : Ax = 0},
R(A) = {Ax : x ∈ X}

Theorem 2.11. Let A : X → Y be a linear operator. Then the fol-
lowing are equivalent:
(a) A is continuous (everywhere);
(b) A is continuous at x = 0;
(c) A is bounded: There exists a constant C ≥ 0 such that ‖Ax‖ ≤
C‖x‖ for all x ∈ X.

Proof. (a) =⇒ (b): This is trivial.
(b) =⇒ (c): Suppose that A was not bounded. Then we can find,

for every n ∈ N, a vector xn ∈ X with ‖Axn‖ > n‖xn‖. Let yn =
(1/(n‖xn‖))xn. Then ‖yn‖ = 1/n, so yn → 0, but ‖Ayn‖ > 1, so Ayn
can not go to the zero vector, contradicting (b).

(c) =⇒ (a): Suppose that xn → x. We want to show that then also
Axn → Ax, and indeed this follows immediately from the linearity and
boundedness of A:

‖Axn − Ax‖ = ‖A(xn − x)‖ ≤ C‖xn − x‖ → 0

�

Given two normed spaces X, Y , we introduce the space B(X, Y ) of
bounded (or continuous) linear operators from X to Y . The special
case X = Y is of particular interest; in this case, we usually write
B(X) instead of B(X,X).
B(X, Y ) becomes a vector space if addition and multiplication by

scalars are defined in the obvious way (for example, (A+B)x := Ax+
Bx). We can go further and also introduce a norm on B(X, Y ), as
follows:

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

Since A is assumed to be bounded here, the supremum will be finite.
We call ‖A‖ the operator norm of A (that this is a norm will be seen
in Theorem 2.12 below).

There are a number of ways to compute ‖A‖.
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Exercise 2.13. Prove the following formulae for ‖A‖ (for A ∈ B(X, Y )):

‖A‖ = inf{C ≥ 0 : ‖Ax‖ ≤ C‖x‖ for all x ∈ X}
= min{C ≥ 0 : ‖Ax‖ ≤ C‖x‖ for all x ∈ X}

‖A‖ = sup
‖x‖=1

‖Ax‖

In particular, this shows that ‖Ax‖ ≤ ‖A‖ ‖x‖, and ‖A‖ is the small-
est constant for which this inequality holds.

Exercise 2.14. However, it is not necessarily true that ‖A‖ = max‖x‖=1 ‖Ax‖.
Provide an example of such an operator A.

Suggestion: X = Y = c0 (or `1 if you prefer, this also works very
well), and define (Ax)n = anxn, where an is a suitably chosen bounded
sequence.

Theorem 2.12. Let X, Y be normed spaces.
(a) B(X, Y ) with the operator norm is a normed space.
(b) If Y is a Banach space, then B(X, Y ) (with the operator norm)

is a Banach space.

The special case Y = C (recall that this is a Banach space if we use
the absolute value as the norm) is particularly important. We use the
alternative notation X∗ = B(X,C), and we call the elements of X∗

(continuous, linear) functionals. X∗ itself is called the dual space (or
just the dual) of X.

This must not be confused with the dual space from linear algebra,
which is defined as the set of all linear maps from the original vector
space back to its base field (considered as a vector space also). This is of
limited use in functional analysis. The (topological) dual X∗ contains
only the continuous linear maps back to the base field; it is usually
much smaller than the algebraic dual described above.

Proof. (a) We observed earlier that B(X, Y ) is a vector space, so we
need to check that the operator norm satisfies the properties from Def-
inition 2.1. First of all, we will have ‖A‖ = 0 precisely if Ax = 0 for all
x ∈ X, that is, precisely if A is the zero map or, put differently, A = 0
in B(X, Y ). Next, if c ∈ C and A ∈ B(X, Y ), then

‖cA‖ = sup
‖x‖=1

‖cAx‖ = sup
‖x‖=1

|c|‖Ax‖ = |c|‖A‖.

A similar calculation establishes the third property from Definition 2.1:

‖A+B‖ = sup
‖x‖=1

‖(A+B)x‖ ≤ sup
‖x‖=1

(‖Ax‖+ ‖Bx‖) ≤ ‖A‖+ ‖B‖
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(b) Let An be a Cauchy sequence from B(X, Y ). We must show that
An converges. Observe that for fixed x, Anx will be a Cauchy sequence
in Y . Indeed,

‖Amx− Anx‖ ≤ ‖Am − An‖‖x‖
can be made arbitrarily small by taking both m and n large enough.
Since Y is now assumed to be complete, the limits Ax := limn→∞Anx
exist, and we can define a map A on X in this way. We first check that
A is linear:

A(x1 + x2) = lim
n→∞

An(x1 + x2) = lim
n→∞

(Anx1 + Anx2)

= lim
n→∞

Anx1 + lim
n→∞

Anx1 = Ax1 + Ax2,

and a similar (if anything, this is easier) argument shows that A(cx) =
cAx.
A is also bounded because

‖Ax‖ = ‖ limAnx‖ = lim ‖Anx‖ ≤ (sup ‖An‖) ‖x‖;

the supremum is finite because |‖Am‖ − ‖An‖| ≤ ‖Am −An‖, so ‖An‖
forms a Cauchy sequence of real numbers and thus is convergent and,
in particular, bounded. Notice also that we used the continuity of the
norm for the second equality (see Exercise 2.2(b)).

Summing up: we have constructed a map A and confirmed that in
fact A ∈ B(X, Y ). The final step will be to show that An → A, with
respect to the operator norm in B(X, Y ). Let x ∈ X, ‖x‖ = 1. Then,
by the continuity of the norm again,

‖(A− An)x‖ = lim
m→∞

‖(Am − An)x‖ ≤ lim sup
m→∞

‖Am − An‖.

Since x was arbitrary, it also follows that

‖A− An‖ ≤ lim sup
m→∞

‖Am − An‖.

Since An is a Cauchy sequence, the lim sup can be made arbitrarily
small by taking n large enough. �

There are discontinuous linear maps if the first space, X, is infinite-
dimensional. We can then even take Y = C. An abstract construction
can be done as follows: Let {eα} be an algebraic basis of X (that is,
every x ∈ X can be written in a unique way as a linear combination of
(finitely many) eα’s). For arbitrary complex numbers cα, there exists
a linear map A : X → C with Aeα = cα‖eα‖.

Exercise 2.15. This problem reviews the linear algebra fact needed here.
Let V , W be vector spaces (over C, say), and let {eα} be a basis of V .
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Show that for every collection of vectors wα ∈ W , there exists a unique
linear map A : V → W with Aeα = wα for all α.

Since ‖Aeα‖/‖eα‖ = |cα|, we see that A can not be bounded if
supα |cα| =∞.

On the other hand, if dimX <∞, then linear operators A : X → Y
are always bounded. We will see this in a moment; before we do this,
we introduce a new concept and prove a related result.

Definition 2.13. Two norms on a common space X are called equiv-
alent if they generate the same topology.

This can be restated in a less abstract way:

Proposition 2.14. The norms ‖ · ‖1, ‖ · ‖2 are equivalent if and only
if there are constants C1, C2 > 0 such that

(2.5) C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1 for all x ∈ X.

Proof. Consider the identity as a map from (X, ‖ · ‖1) to (X, ‖ · ‖2).
Clearly, this is bijective, and, by Theorem 2.11 this map and its in-
verse are continuous precisely if (2.5) holds. Put differently, (2.5) is
equivalent to the identity map being a homeomorphism (a bijective
continuous map with continuous inverse), and this holds if and only if
(X, ‖ · ‖1) and (X, ‖ · ‖2) have the same topology. �

Exercise 2.16. (a) Let ‖ · ‖1, ‖ · ‖2 be equivalent norms on X. Show
that then (X, ‖ · ‖1) and (X, ‖ · ‖2) are either both complete or both
not complete.

(b) Construct a metric d on R that produces the usual topology, but
(R, d) is not complete. (Since (R, | · |) has the same topology and is
complete, this shows that the analog of (a) for metric spaces is false.)

Theorem 2.15. Let X be a (complex) vector space with dimX <∞.
Then all norms on X are equivalent.

In particular, by combining Example 2.1 with Exercise 2.16, we see
that finite-dimensional normed spaces are automatically complete and
thus Banach spaces.

Proof. By fixing a basis on X, we may assume that X = Cn. We will
show that every norm on Cn is equivalent to ‖ · ‖1. We will do this by
verifying (2.5). So let ‖ · ‖ be a norm. Then, first of all,

(2.6) ‖x‖ =

∥∥∥∥∥
n∑
j=1

xjej

∥∥∥∥∥ ≤
n∑
j=1

|xj| ‖ej‖ ≤
(

max
j=1,...,n

‖ej‖
)
‖x‖1.
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To obtain the other inequality, consider again the identity as a map
from (Cn, ‖ · ‖1) to (Cn, ‖ · ‖). As we have just seen in (2.6), this map
is bounded, thus continuous. Since a norm always defines a continu-
ous map, the composite map from (Cn, ‖ · ‖1) to R, x 7→ ‖x‖ is also
continuous. Now {x ∈ Cn : ‖x‖1 = 1} is a compact subset of Cn,
with respect to the topology generated by ‖ ·‖1 (which is just the usual
topology on Cn). Therefore, the image under our map, which is given
by {‖x‖ : ‖x‖1 = 1} is a compact subset of R, and it doesn’t contain
zero, so

inf
‖x‖1=1

‖x‖ = min
‖x‖1=1

‖x‖ =: c > 0,

and the homogeneity of norms now implies that ‖x‖ ≥ c‖x‖1 for all
x ∈ Cn, as required. �

Corollary 2.16. Suppose that dimX < ∞, and let A : X → Y be a
linear operator. Then A is bounded.

Proof. By Theorem 2.15, it suffices to discuss the caseX = Cn, equipped
with the norm ‖ · ‖1. As above, we estimate

‖Ax‖ =

∥∥∥∥∥A
(

n∑
j=1

xjej

)∥∥∥∥∥ ≤
n∑
j=1

|xj| ‖Aej‖ ≤
(

max
j=1,...,n

‖Aej‖
)
‖x‖1.

�

We conclude this chapter by discussing sums and quotients of Banach
spaces. Let X1, . . . , Xn be Banach spaces. We form their direct sum
(as vector spaces). More precisely, we introduce

X = {(x1, . . . , xn) : xj ∈ Xj};
this becomes a vector space in the obvious way: the algebraic opera-
tions are defined componentwise. Of course, we want more: We want
to introduce a norm on X that makes X a Banach space, too. This
can be done in several ways; for example, the following works.

Theorem 2.17. ‖x‖ =
∑n

j=1 ‖xj‖j defines a norm on X, and with
this norm, X is a Banach space.

Exercise 2.17. Prove Theorem 2.17.

We will denote this new Banach space by X =
⊕n

j=1Xj.
Moving on to quotients now, we consider a Banach space X and a

closed subspace M ⊆ X.

Exercise 2.18. (a) In general, subspaces need not be closed. Give an
example of a dense subspace M ⊆ `1, M 6= `1 (in other words, we want
M = `1, M 6= `1; in particular, such an M is definitely not closed).
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(b) What can you say about open subspaces of a normed space?

Exercise 2.19. However, show that finite-dimensional subspaces of a
normed space are always closed.

Suggestion: Use Theorem 2.15.

As a vector space, we define the quotient X/M as the set of equiva-
lence classes (x), x ∈ X, where x, y ∈ X are equivalent if x−y ∈M . So
(x) = x+M = {x+m : m ∈M}, and to obtain a vector space structure
on X/M , we do all calculations with representatives. In other words,
(x) + (y) := (x+ y), c(x) := (cx), and this is well defined, because the
right-hand sides are independent of the choice of representatives x, y.

Theorem 2.18. Let X be a Banach space, and let M ⊆ X be a closed
subspace. Then ‖(x)‖ := infy∈(x) ‖y‖ defines a norm on X/M , and
X/M with this norm is a Banach space.

Proof. First of all, we must check the conditions from Definition 2.1.
We have ‖(x)‖ = 0 precisely if there are mn ∈M such that ‖x−mn‖ →
0. This holds if and only if x ∈M , but M is assumed to be closed, so
‖(x)‖ = 0 if and only if x ∈ M , that is, if and only if x represents the
zero vector from X/M (equivalently, (x) = (0)).

If c ∈ C, c 6= 0, then

‖c(x)‖ = ‖(cx)‖ = inf
m∈M

‖cx−m‖ = inf
m∈M

‖cx− cm‖

= |c| inf
m∈M

‖x−m‖ = |c| ‖(x)‖.

If c = 0, then this identity (‖0(x)‖ = 0‖(x)‖) is also true and in fact
trivial.

The triangle inequality follows from a similar calculation:

‖(x) + (y)‖ = ‖(x+ y)‖ = inf
m∈M

‖x+ y −m‖ = inf
m,n∈M

‖x+ y −m− n‖

≤ inf
m,n∈M

(‖x−m‖+ ‖y − n‖) = ‖(x)‖+ ‖(y)‖

Finally, we show that X/M is complete. Let (xn) be a Cauchy se-
quence. Pass to a subsequence such that ‖(xnj+1

)− (xnj
)‖ < 2−j (com-

pare Exercise 2.8). Since the quotient norm was defined as the infimum
of the norms of the representatives, we can now also (inductively) find
representatives (we may assume that these are the xn’s themselves)
such that ‖xnj+1

− xnj
‖ < 2−j. Since

∑
2−j <∞, it follows that xnj

is
a Cauchy sequence in X, so x = limj→∞ xnj

exists. But then we also
have

‖(x)− (xnj
)‖ ≤ ‖x− xnj

‖ → 0,
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so a subsequence of the original Cauchy sequence (xn) converges, and
this forces the whole sequence to converge; see Exercise 2.9. �

Exercise 2.20. Let X be a normed space, and define

Br(x) = {y ∈ X : ‖x− y‖ ≤ r}.

Show that Br(x) = Br(x), where the right-hand side is the closure of
the (open) ball Br(x). (Compare Exercise 1.16, which discussed the
analogous problem on metric spaces.)

Exercise 2.21. Call a subset B of a Banach space X bounded if there
exists C ≥ 0 such that ‖x‖ ≤ C for all x ∈ B.
(a) Show that if K ⊆ X is compact, then K is closed and bounded.
(b) Consider X = `∞, B = B1(0) = {x ∈ `∞ : ‖x‖ ≤ 1}. Show that B
is closed and bounded, but not compact (in fact, the closed unit ball
of an infinite-dimensional Banach space is never compact).

Exercise 2.22. If xn are elements of a normed space X, we define, as
usual, the series

∑∞
n=1 xn as the limit as N → ∞ of the partial sums

SN =
∑N

n=1 xn, if this limit exists (of course, this limit needs to be taken
with respect to the norm, so S =

∑∞
n=1 xj means that ‖S−SN‖ → 0).

Otherwise, the series is said to be divergent. Call a series absolutely
convergent if

∑∞
n=1 ‖xn‖ <∞.

Prove that a normed space is complete if and only if every absolutely
convergent series converges.

Exercise 2.23. Find the operator norm of the identity map (x 7→ x) as
an operator
(a) from (Cn, ‖ · ‖1) to (Cn, ‖ · ‖2);
(b) from (Cn, ‖ · ‖2) to (Cn, ‖ · ‖1).

Exercise 2.24. Find the operator norms of the following operators on
`2(Z). In particular, prove that these operators are bounded.

(Ax)n = xn+1 + xn−1, (Bx)n =
n2

n2 + 1
xn

Exercise 2.25. Let X, Y, Z be Banach spaces, and let S ∈ B(X, Y ),
T ∈ B(Y, Z). Show that the composition TS lies in B(X,Z) and
‖TS‖ ≤ ‖T‖ ‖S‖. Show also that strict inequality is possible here.
Give an example; as always, it’s sound strategy to try to keep this
as simple as possible. Here, finite-dimensional spaces X, Y, Z should
suffice.

Exercise 2.26. Let X, Y be Banach spaces and let M be a dense sub-
space of X (there is nothing unusual about that on infinite-dimensional
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spaces; compare Exercise 2.18). Prove the following: Every A0 ∈
B(M,Y ) has a unique continuous extension to X. Moreover, if we call
this extension A, then A ∈ B(X, Y ) (by construction, A is continuous,
so we’re now claiming that A is also linear), and ‖A‖ = ‖A0‖.

Exercise 2.27. (a) Let A ∈ B(X, Y ). Prove that N(A) is a closed
subspace of X.
(b) Now assume that F is a linear functional on X, that is, a linear
map F : X → C. Show that F is continuous if N(F ) is closed (so, for
linear functionals, continuity is equivalent to N(F ) being closed).

Suggestion: Suppose F is not continuous, so that we can find xn ∈ X
with ‖xn‖ = 1 and |F (xn)| ≥ n, say. Also, fix another vector z /∈ N(F )
(what if N(F ) = X?). Use these data to construct a sequence yn ∈
N(F ) that converges to a vector not from N(F ). (If this doesn’t seem
helpful, don’t give up just yet, but try something else; the proof is quite
short.)


