
15. Perturbations by compact operators

In this chapter, we study the stability (or lack thereof) of various
spectral properties under small perturbations. Here’s the type of situ-
ation we have in mind: Let T ∈ B(H) be a self-adjoint operator, and
let V ∈ B(H) be another self-adjoint operator that will be assumed
to be small in a suitable sense. We then want to compare the spectral
properties of T + V with those of T .

Definition 15.1. Let T be a self-adjoint operator, with spectral res-
olution E. The essential spectrum σess(T ) is the set of all t ∈ R for
which dimR(E((t− r, t+ r))) =∞ for all r > 0.

Recall that if t /∈ σ(T ), then E((t− r, t+ r)) = 0 for all small r > 0,
so σess ⊂ σ. Also, it is clear that σess is a closed subset of R because if
t /∈ σess, then R(E((t− r, t+ r))) is finite-dimensional for some r > 0,
but this implies that (t− r, t+ r)∩ σess = ∅, so the complement of σess
is open, as claimed.

Proposition 15.2. t ∈ σess precisely if t is an accumulation point of
σ or an eigenvalue of infinite multiplicity.

Here, we define the multiplicity of an eigenvalue t as dimN(T − t),
as expected. Of course, if T has finite spectral multiplicity, then the
second alternative cannot occur, so in this case, σess is just the set of
accumulation points of σ. For example, this remark applies to Jacobi
matrices.

Proof. If t ∈ σ is not an accumulation point of the spectrum, then t is
an isolated point of σ. So, for small enough r > 0, E((t− r, t + r)) =
E({t}). Since this is the projection onto N(T − t), it will be finite-
dimensional if t is not an eigenvalue of infinite multiplicity. Hence
t /∈ σess.

Conversely, if t is an eigenvalue of infinite multiplicity, thenR(E({t}) =
N(T − t) is infinite-dimensional, so t ∈ σess. If t is an accumulation
point of σ, then, for any r > 0 and N ∈ N, (t − r, t + r) contains N
distinct points tn ∈ σ and thus also N disjoint open subsets In that all
intersect σ (just take small neighborhoods of the tn’s). Now E(In) 6= 0,
so dimR(E(In)) ≥ 1, and, moreover, these subspaces are mutually or-
thogonal. Therefore, dimR(E((t− r, t + r))) ≥ N . Since N was arbi-
trary here, this space is in fact infinite-dimensional, so t ∈ σess. �

Exercise 15.1. Let T ∈ B(H) be a self-adjoint operator on an infinite-
dimensional Hilbert space H. Show that then σess(T ) 6= ∅.

It is sometimes also convenient to introduce a symbol for the comple-
ment, σd = σ \σess. We call σd the discrete spectrum; it consists of the
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isolated points of the spectrum (these are automatically eigenvalues)
of finite multiplicity.

Here is our first result on perturbations.

Theorem 15.3 (Weyl). Let T be a self-adjoint operator, and assume
that V is compact and self-adjoint. Then σess(T + V ) = σess(T ).

There is a very useful criterion for a point to lie in the essential
spectrum, which will lead to an effortless proof of Weyl’s Theorem.
We call a xn ∈ H a Weyl sequence (for T and t) if ‖xn‖ = 1, xn

w−→ 0,
and (T − t)xn → 0.

Theorem 15.4. t ∈ σess(T ) if and only if there exists a Weyl sequence
for T and t.

It is tempting to compare this with the result of Exercise 10.20:
t ∈ σ(T ) if and only there exists a sequence xn ∈ H, ‖xn‖ = 1, so that
(T − t)xn → 0.

Proof. If t ∈ σess, pick x1 ∈ R(E((t − 1, t + 1))), then x2 ∈ R(E((t −
1/2, t + 1/2))) with x2 ⊥ x1, then x3 ∈ R(E((t − 1/3, t + 1/3))) with
x3 ⊥ x1, x2 etc. We can also insist that ‖xn‖ = 1. Then this procedure

yields an ONS xn, so xn
w−→ 0, and ‖(T − t)xn‖ ≤ 1/n.

Conversely, assume that a Weyl sequence xn has been constructed.
We will argue by contradiction, so assume also that dimR(E((t−r, t+
r))) < ∞ for some r > 0. We abbreviate P = E((t − r, t + r)). Since
R(P ) is finite-dimensional, P is a compact operator, and we assumed

that xn
w−→ 0, so it follows that ‖Pxn‖ → 0. Therefore,

‖(T − t)xn‖ ≥ ‖(T − t)(1− P )xn‖ − ‖(T − t)Pxn‖
≥ r‖(1− P )xn‖ − ‖(T − t)Pxn‖ → r,

but this contradicts our assumption that xn is a Weyl sequence. We
have to admit that t ∈ σess. �

Proof of Theorem 15.3. This is very easy now. If xn
w−→ 0, then V xn →

0 by Theorem 14.6(b), so T and T + V have the same Weyl sequences.
�

Here are some typical applications of this result to Jacobi matrices.

Theorem 15.5. Let J be a Jacobi matrix whose coefficients satisfy
an → 1, bn → 0. Then σess(J) = [−2, 2].

Proof. Let J0 be the Jacobi matrix with coefficients an = 1, bn = 0.
We know that σ(J0) = σess(J0) = [−2, 2]. Now J = J0 +K, where

(Ku)n = (an − 1)un+1 + (an−1 − 1)un−1 + bnun (n ≥ 2).
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Exercise 15.2. Show that K is compact.
Suggestion: Show that we can write K = K0 +K1, where K0 is a finite
rank operator and ‖K1‖ < ε.

Now Weyl’s Theorem gives the claim. �

The same argument shows that if, more generally, J, J ′ are Jacobi
matrices whose coefficients satisfy an − a′n → 0, bn − b′n → 0, then
σess(J) = σess(J

′). In particular, the essential spectrum only depends
on what happens asymptotically, “at infinity.”

We also obtain a decomposition theorem for whole line problems. By
this, we mean the following: Consider a whole line Jacobi matrix J :
`2(Z) → `2(Z), and let J± be its half line restrictions. More precisely,
let

(J+u)n =

{
a1u2 + b1u1 n = 1

anun+1 + an−1un−1 + bnun n ≥ 2
,

(J−u)n =

{
a−1u−1 + b0u0 n = 0

anun+1 + an−1un−1 + bnun n ≤ −1
.

We interpret J± as an operator on `2(Z±), where Z+ = N, Z− = Z \N.

Theorem 15.6. σess(J) = σess(J+) ∪ σess(J−)

Proof. We will describe the argument somewhat informally, rather than
try to set up elaborate notation for what is a fairly simple argument.
We cut Z into two half lines and set a0 = 0, which is a rank two per-
turbation of J , and thus preserves the essential spectrum by Weyl’s
Theorem. Call this new operator J1. Since `2(Z+) is a reducing sub-
space for J1, we may naturally identify J1 = J+ ⊕ J−. Therefore, the
following observation finishes the proof.

Exercise 15.3. Let Tj ∈ B(Hj) (j = 1, 2) be self-adjoint operators, and
let T = T1 ⊕ T2. Show that then σess(T ) = σess(T1) ∪ σess(T2).

�

Theorem 15.4 is also often useful as a tool to investigate σess. As
an illustration, we will now discuss such an application. We need some
notation. For simplicity, we only treat one-dimensional Schrödinger
operators here; however, analogous results could be formulated and
proved for Jacobi matrices also. Let W ∈ `∞(Z), and denote the
corresponding Schrödinger operator on `2(Z) by HW . In other words,
(HWu)n = un+1 + un−1 + Wnun. Suppose that V ∈ `∞(N) contains
arbitrarily large chunks ofW , in the following sense. There are numbers
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cn, Ln ∈ N, Ln →∞, so that the sets {cn−Ln, . . . , cn+Ln} are disjoint
subintervals of N, and

Vcn+j = Wj (|j| ≤ Ln).

We denote the corresponding Schrödinger operator by H+
V . The super-

script + reminds us that this is a half line operator, on `2(N).

Theorem 15.7. σ(HW ) ⊂ σess(H
+
V )

Proof. Let t ∈ σ(HW ). We will construct a Weyl sequence for H+
V and

this t; this will finish the proof by Theorem 15.4.
By Exercise 10.20, there is a sequence u(n) ∈ `2(Z) so that ‖u(n)‖ = 1,

‖(HW − t)u(n)‖ → 0. Since χ{−N,...,N}u→ u in `2 as N →∞ and since
HW − t is a continuous operator, we may in fact also assume that the
u(n) have finite supports.

Since Ln → ∞, there are nj → ∞ so that u(j) is supported by
{−Lnj

, . . . , Lnj
}. To keep the notation simple, we will just assume

that nj = j works.

Then the shifted sequence v
(n)
j = u

(n)
j−cn is a Weyl sequence: the v(n)

have disjoint supports, so form an ONS, and hence v(n) w−→ 0. Moreover,
‖(H+

V − t)v(n)‖ = ‖(HW − t)u(n)‖ → 0. �

These results give information on the spectrum as a set. We are
also interested in finer properties of the spectrum, such as the ac, sc,
pp decomposition. We start with rank one perturbations, and we will
in fact again work in an abstract framework, for general Hilbert space
operators. So let T ∈ B(H) be self-adjoint, and assume that T has
simple spectrum. Fix a cyclic vector x ∈ H, ‖x‖ = 1. Recall that this
means that {f(T )x : f ∈ C(σ(T ))} is dense in H. We want to consider
the family of rank one perturbations

Tg = T + g〈x, ·〉x (g ∈ R).

The following observations confirm that this is a good choice of setup.

Exercise 15.4. Let T ∈ B(H) be normal, and let M ⊂ H be a closed
subspace. Show that M is reducing if and only if M is invariant under
both T and T ∗.

Now suppose that we are given an arbitrary self-adjoint operator
T ∈ B(H) and an arbitrary vector x ∈ H, ‖x‖ = 1. Form the subspace

H1 = {f(T )x : f ∈ C(σ(T ))}. Then H1 is clearly invariant under T ,
thus reducing by the Exercise. Thus we can decompose T = T1 ⊕ T2,
where T2 : H⊥1 → H⊥1 . Then

T + g〈x, ·〉x = (T1 + g〈x, ·〉x)⊕ T2.
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Since it is also clear that x is cyclic for T1, we have reduced the situation
of a general rank one perturbation to the one outlined above.

We also discover such a scenario in the theory of Jacobi matrices: If
T = J , a Jacobi matrix on H = `2(N), then x = δ1 is a cyclic vector.
Note that the perturbed operator Jg = J + g〈δ1, ·〉δ1 is again a Jacobi
matrix. In fact, we obtain it from J by simply replacing b1 → b1 + g.

Proposition 15.8. For every g ∈ R, x is a cyclic vector for Tg.

Proof. An inductive argument shows that T ng x = T nx + y, where y

is a linear combination of x, Tx, . . . , T n−1x. So L(x, Tx, . . . , T nx) =
L(x, Tgx, . . . , T

n
g x), or, put differently, {p(T )x} = {p(Tg)x}, where p

varies over all polynomials. However, every continuous function on the
compact set σ(T ) ⊂ R can be uniformly approximated by polynomials,
so {p(T )x} is already dense in H. �

Since x is cyclic, we know from Theorem 10.7 and its proof that Tg is
unitarily equivalent to multiplication by t on L2(R, µg), where dµg(t) =
d‖Eg(t)x‖2, and here Eg of course denotes the spectral resolution of Tg.
By the functional calculus,

Fg(z) ≡ 〈x, (Tg − z)−1x〉 =

∫
R

dµg(t)

t− z
(z /∈ R).

These functions Fg satisfy the following identity, which will be crucial
for everything that follows.

Theorem 15.9.

(15.1) Fg(z) =
F (z)

1 + gF (z)

Here, F (z) = F0(z) = 〈x, (T − z)−1x〉.
Proof. Write P = 〈x, ·〉x and notice that (for z /∈ R)

(Tg − z)−1 − (T − z)−1 = −g(Tg − z)−1P (T − z)−1,

so

Fg(z)− F (z) = −g〈x, (Tg − z)−1P (T − z)−1x〉
= −g〈x, (Tg − z)−1x〉〈x, (T − z)−1x〉 = −gFg(z)F (z),

and we obtain (15.1) by rearranging. �

We can now use (15.1) to show that the ac part of a self-adjoint
operator is invariant under rank one perturbations. We need some
preliminary observations. Let ρ be an absolutely continuous (positive)
Borel measure on R. For simplicity, we also assume that ρ is finite.
Then a Borel set M ⊂ R is called an essential support of ρ if ρ(M c) = 0
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and if N ⊂ M , ρ(N) = 0, then |N | = 0, where | · | denotes Lebesgue
measure. By the Radon-Nikodym Theorem, we can write dρ(x) =
f(x) dx, with f ∈ L1(R), f ≥ 0, and now M = {x ∈ R : f(x) > 0}
provides an essential support. Essential supports are unique up to
null sets: If M,M ′ are essential supports, then |M∆M ′| = 0, where
M∆M ′ = (M \M ′)∪(M ′\M). Moreover, essential supports determine
the measure class, in the following sense: Let Mρ, Mν be essential
supports of the (absolutely continuous) measures ρ, ν. Then ρ and ν
are equivalent (have the same null sets) if and only if |Mρ∆Mν | = 0,
which happens if and only if ρ, ν have a common essential support M .

Recall from Exercise 10.17 that two simple self-adjoint operators S,
T are unitarily equivalent if and only if they have equivalent spectral
measures µ, ν. So we can now say that Sac ∼= Tac if and only if µac, νac
admit a common essential support. With these preparations out of the
way, it will now be an easy matter to establish the following fact:

Theorem 15.10. Tg and T have unitarily equivalent absolutely con-
tinuous parts.

This of course implies that σac(Tg) = σac(T ), but the actual state-
ment is stronger than this because, in general, the ac spectra can be
equal without the ac parts of the operators being unitarily equivalent.

Exercise 15.5. Explain this in more detail.

Suggestion: Construct two ac measures µ, ν, so that M
(µ)
t (in L2(µ))

and M
(ν)
t (in L2(ν)) have the same spectra, but are not unitarily equiv-

alent. Equivalently, you need to construct two ac measures that have
the same topological support but not the same null sets.

Proof. We work with the measures dµg(t) = d‖Eg(t)x‖2 that were in-
troduced above. By Theorem 13.10(a), (c), Fg(t) ≡ limy→0+ Fg(t+ iy)
exists for almost every t ∈ R, and d(µg)ac(t) = (1/π)ImFg(t) dt. As
discussed above, Mg = {t ∈ R : ImFg(t) > 0} is an essential support
of this measure. Fix g ∈ R and assume that t ∈M = M0. By throwing
away a null set N ⊂ R, we may also assume that F (t) = limF (t+ iy)
and Fg(t) exist; since t ∈ M , we have that ImF (t) > 0. From (15.1),
we see that

ImFg(z) =
ImF (z)

|1 + gF (z)|2
.

Take z = t + iy and let y → 0+. It follows that ImFg(t) > 0, too.
In terms of the supports, this calculation has shown that we can take
Mg ⊃M . By symmetry, we also obtain that Mg ⊂M . �

This result can be improved. First of all, any self-adjoint finite rank
perturbation is of the form V =

∑N
n=1 vn〈xn, ·〉xn and thus may be
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interpreted as N successive rank one perturbations. So the ac part of
a self-adjoint operator is invariant, up to unitary equivalence, under
(self-adjoint) finite rank perturbations. A stronger result holds, but
this is not so easy to prove, so I’ll just report on this:

Theorem 15.11 (Kato-Rosenblum). Suppose that T ∈ B(H) is self-
adjoint and V is self-adjoint and V ∈ B1(H). Then the ac parts of T
and T + V are unitarily equivalent.

Exercise 15.6. Prove that the ac spectrum also obeys a decomposition
law: If J is a Jacobi matrix on `2(Z), then σac(J) = σac(J+) ∪ σac(J−)
(the notation is as in Theorem 15.6).

The trace class condition in Theorem 15.11 is sharp. This is demon-
strated by the following rather spectacular result (which we don’t want
to prove here).

Theorem 15.12 (Weyl-von Neumann). Let T ∈ B(H) be a self-adjoint
operator on a separable Hilbert space H. Then, for every p > 1 and
ε > 0, there exists a self-adjoint K ∈ Bp(H) with ‖K‖p < ε so that
σac(T +K) = σsc(T +K) = ∅.

So T + K has pure point spectrum. Since the essential spectrum is
preserved by the compact perturbationK, the closure of the eigenvalues
of T + K has to contain σess(T ), so we will often get dense point
spectrum here.

We have seen that the ac spectrum has reasonably good stability
properties under small perturbations. What about the sc, pp parts?
The following examples make short work of any hopes one might have.
As a preparation, we first prove a criterion that will allow us to conve-
niently detect point spectrum.

Proposition 15.13. Let

G(x) =

∫
R

dµ(t)

(x− t)2
∈ (0,∞].

Then, for all g 6= 0, the following statements are equivalent:
(a) µg({x}) > 0;
(b) G(x) <∞, F (x) = −1/g.

Here, F (x) = −1/g could be interpreted as an abbreviation for the
statement F (x) = limy→0+ F (x + iy) exists and equals −1/g, but ac-
tually existence of this limit is automatic if G(x) <∞.

Exercise 15.7. Prove this remark. More precisely, prove the following:
If G(x) <∞, then F (x) = limy→0+ F (x+ iy) exists and F (x) ∈ R.
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Proof. Recall that µg({x}) = lim−iyFg(x + iy) (Theorem 13.10(e)).
So, if µg({x}) > 0, then

F (x+ iy) =
Fg(x+ iy)

1− gFg(x+ iy)
=

yFg(x+ iy)

y − gyFg(x+ iy)
→ −1

g
.

Moreover,
ImF (x+ iy)

y
=

yImF (x+ iy)

|y − gyFg(x+ iy)|2
also approaches a finite, positive limit as y → 0+. On the other hand,

ImF (x+ iy)

y
=

∫
R

dµ(t)

y2 + (x− t)2
,

and this converges to G(x) by the Monotone Convergence Theorem, so
G(x) <∞.

Conversely, if G(x) < ∞, then the same calculation shows that
ImF (x + iy)/y → G(x). Moreover, 1/|t − x| ∈ L1(µ), so Dominated
Convergence shows that

F (x) =

∫
R

dµ(t)

t− x
(compare Exercise 15.7). Hence

F (x+ iy)− F (x)

y
= i

∫
R

dµ(t)

(t− x− iy)(t− x)
→ iG(x),

by Dominated Convergence again. In other words, if also F (x) = −1/g,
then (1 + gF (x+ iy))/y → igG(x). It now follows that

y ImFg(x+ iy) =
y−1ImF (x+ iy)

y−2|1 + gF (x+ iy)|2
→ 1

g2G(x)
> 0,

so µg({x}) > 0, as claimed. �

In the following examples, we will just give the measure µ. This will
determine the measures µg completely, via F , Fg and (15.1). Moreover,
we can just let H = L2(R, dµ), T = Mt, x ≡ 1 to confirm that there
indeed is a self-adjoint operator and a cyclic vector for which this mea-
sure µ is the corresponding spectral measure. Alternatively, we could
let T = J be the Jacobi matrix with spectral measure µ (use Theorem
13.9!) and x = δ1.

Example 15.1. Let dµ(x) = (1/2)χ[0,1](x) dx +
∑

n≥1 2−n−1δxn , where
xn is a countable dense subset of [0, 1]. Then σac(T ) = σpp(T ) = [0, 1].
However, for all 0 ≤ x ≤ 1, we have that

G(x) ≥ 1

2

∫ 1

0

dt

(x− t)2
=∞,
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so σpp(Tg) ∩ [0, 1] = ∅ for all g 6= 0 by Proposition 15.13.

Example 15.2. Let ρn = 2−n
∑2n

j=1 δj2−n and µ =
∑

n≥1 2−nρn. Then

σpp(T ) = [0, 1], σac(T ) = σsc(T ) = ∅. If x ∈ [0, 1], then there is a j so
that |x− j2−n| ≤ 2−n, so∫

R

dρn(t)

(x− t)2
≥ 2−n22n = 2n,

and G(x) ≥
∑

2−n2n = ∞. Proposition 15.13 shows that σpp(Tg) ∩
[0, 1] = ∅ for all g 6= 0. Since both the essential and the ac spectrum
are preserved, it follows that σsc(Tg) = [0, 1].

Exercise 15.8. Show that σp(Tg1) ∩ σp(Tg2) = ∅ if g1 6= g2 (we are
working with σp here, the set of eigenvalues, not its closure σpp).

Exercise 15.9. Let J be a Jacobi matrix on `2(N), and let dµ(t) =
d‖E(t)δ1‖2, as usual. Consider the family of rank one perturbations Jg
(corresponding to the coefficient change b1 → b1 + g).
(a) Show that x ∈ R is an eigenvalue of Jg for some g ∈ R if and only
if (τ − x)u = 0 has an `2 solution u with u1 6= 0.
(b) Show that G(x) <∞ if and only if (τ − x)u = 0 has an `2 solution
u with u0, u1 6= 0.

Exercise 15.10. Let T ∈ B(H) be a self-adjoint operator. Show that T
is compact if and only if σess(T ) ⊂ {0}.


