
13. Stone’s theorem and quantum dynamics

Our first topic in this chapter is a mathematical analysis of (D).
To prepare for this, let T be a self-adjoint operator and let U(t) =
e−itT . Recall that this is defined via the functional calculus as U(t) =∫
R e
−its dE(s), where E is the spectral resolution of T . By the prop-

erties of the functional calculus, U(t) is unitary for every t ∈ R and
U(s+ t) = U(s)U(t).

Exercise 13.1. Prove these properties of U(t).

In other words, U(t) is a unitary group as in (D). Moreover, U(t) is
also strongly continuous: this means that for every fixed x ∈ H, the
map R → H, t 7→ U(t)x is continuous, and this was an additional
requirement imposed by (D). To prove this, notice that

‖U(t)x− U(s)x‖2 =

∫
R
|e−itv − e−isv|2 dµx,x(v)

by the properties of the functional calculus. Dominated convergence
shows that the right-hand side goes to zero as s→ t, as claimed.

Exercise 13.2. Let T be a self-adjoint operator on a Hilbert space H,
and let U(t) = e−itT . Show that the map R → B(H), t 7→ U(t) is
continuous if and only if T ∈ B(H).

Exercise 13.3. Let T be self-adjoint and U(t) = e−itT . Suppose that
x ∈ D(T ). Show that U(t)x ∈ D(T ) for all t ∈ R. Then show that the
map t 7→ U(t)x is differentiable in the sense that

d

dt
U(t)x := lim

h→0

1

h
(U(t+ h)x− U(t)x)

exists as a norm limit inH. Finally, show that (d/dt)U(t)x = −iTU(t)x.
Hint: Use an argument similar to the one that was used above to es-
tablish the strong continuity of U(t) = e−itT .

Stone’s Theorem asserts that, conversely, every strongly continuous
unitary group is of this type. Recall from (D) that a unitary group is
a map U : R → B(H) such that each U(t) is unitary and U(s + t) =
U(s)U(t).

Theorem 13.1 (Stone). Let U(t) be a strongly continuous unitary
group. Then there exists a unique self-adjoint operator T such that
U(t) = e−itT .

We call T the (infinitesimal) generator of U(t).

Exercise 13.4. Let U(t) be a unitary group. Prove that U(0) = 1. Also,
prove that U(t)∗ = U(−t).
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Proof. From Exercise 13.3, we already have at least a vague idea of
how to find such a T : we have to “differentiate” U(t). It thus seems
natural to define

D(S) =

{
x ∈ H : lim

h→0

U(h)− 1

h
x exists

}
,

Sx = i lim
h→0

U(h)− 1

h
x.(13.1)

It is easy to see that D(S) is a subspace and S is linear. I next claim
that D(S) is dense. To show this, we will make use of Hilbert space
valued integrals without however carefully developing this subject.

For x ∈ H and f ∈ C∞0 (R), we want to define

(13.2) xf =

∫ ∞
−∞

f(t)U(t)x dt.

What exactly do we mean by this? Since the integrand takes values
in H, this is certainly not clear right away. Fortunately, several good
answers are available. For us, (generalized) Riemann sums provide
a convenient interpretation of (13.2): We take R ∈ N so large that

supp f ⊆ (−R,R), then form (1/N)
∑RN

n=−RN f(n/N)U(n/N)x and
finally take the limit N → ∞ to define the right-hand side of (13.2).
Existence of this limit is an easy consequence of the continuity of the
integrand, just as in the elementary theory of the Riemann integral. In
the sequel, we will make use of some (very plausible) basic properties
of this new integral without worrying too much about their formal
verification; see also Exercise 13.7 below.

First of all, I claim that xf ∈ D(S) whenever f ∈ C∞0 (R). This
follows from the following calculation:

U(h)− 1

h
xf =

1

h

∫
R
f(t)(U(t+ h)− U(t))x dt

=

∫
R

f(t− h)− f(t)

h
U(t)x dt

Now as h → 0, we have (f(t − h) − f(t))/h → −f ′(t), uniformly in
t ∈ R.

Exercise 13.5. Prove this. The point here of course is the uniform
convergence; convergence at a fixed t just follows from the definition of
the derivative.

From this, it follows that (1/h)(U(h) − 1)xf → x−f ′ ; again, that
should seem very plausible even without a detailed argument because
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Riemann integration can be interchanged with uniform limits. We have
shown that xf ∈ D(S), as claimed.

Now if x ∈ H is arbitrary, fix an f ∈ C∞0 (R) with
∫
f = 1, and let

fn(t) = nf(nt), xn = xfn . Then

‖xn − x‖ =

∥∥∥∥∫
R
fn(t)(U(t)x− x) dt

∥∥∥∥ ≤ ∫
R
|fn(t)| ‖U(t)x− x‖ dt.

Notice that the fn are supported by (−R/n,R/n), for suitable fixed
R > 0, and sup|t|<R/n ‖U(t)x − x‖ → 0 as n → ∞, by the strong

continuity of U(t) and Exercise 13.4. Since
∫
|fn| is independent of n,

it follows that xn → x, and, as observed earlier, xn ∈ D(S), so D(S)
is indeed dense.

Given this, it is now easy to verify that S is symmetric. Let x, y ∈
D(S). Then, by the continuity of the scalar product and the second
part of Exercise 13.4,

〈x, Sy〉 = i lim
h→0

〈
x,
U(h)− 1

h
y

〉
= i lim

h→0

〈
U(−h)− 1

h
x, y

〉
= i〈iSx, y〉 = 〈Sx, y〉.

Next, I claim that T = S is self-adjoint. T is symmetric by Exercise
11.14, and we will use Theorem 11.11(b) with z = i to establish self-
adjointness. As a preliminary, observe that if x ∈ D(S), then U(t)x ∈
D(S) also for all t ∈ R because

U(h)− 1

h
U(t)x = U(t)

U(h)− 1

h
x→ −iU(t)Sx.

Now suppose that x ∈ N(T ∗ − i) = N(S∗ − i), fix an arbitrary vector
y ∈ D(S), and let

f(t) = 〈x, U(t)y〉.
By the observation just made, f is differentiable, and in fact

f ′(t) = 〈x,−iSU(t)y〉 = −i〈S∗x, U(t)y〉 = −i〈ix, U(t)y〉 = −f(t).

This ODE has the unique solution f(t) = f(0)e−t. This is unbounded
unless f(0) = 0. Since |f(t)| ≤ ‖x‖ ‖y‖ is clearly bounded, we conclude
that f(0) = 〈x, y〉 = 0, and since y ∈ D(S) was arbitrary here, we have
proved that x ∈ D(S)⊥ = 0. The proof that N(T ∗+ i) = 0 is of course
analogous.

Let V (t) = e−itT . We want to show that U(t) = V (t). Let x ∈
D(S), and put w(t) = U(t)x− V (t)x. Then w is differentiable, by our
discussion from the preceding paragraph (for U(t)x) and Exercise 13.3
(for V (t)x; also notice that D(S) ⊆ D(T )). We have

w′(t) = −iSU(t)x+ iTV (t)x = −iTw(t).
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Hence,

d

dt
〈w(t), w(t)〉 = 〈w′, w〉+ 〈w,w′〉 = i〈Tw,w〉 − i〈w, Tw〉 = 0,

by the symmetry of T .

Exercise 13.6. Formulate and prove the product rule for derivatives of
the scalar product that was used here.

Since w(0) = 0, this shows that U(t)x = V (t)x for all t ∈ R. Since
this holds for all x from the dense setD(S) and since both U(t) and V (t)
are bounded operators, we obtain the desired conclusion U(t) = V (t).

This construction of the infinitesimal generator T also yields unique-
ness: If T is the generator constructed in this proof and we also have
U(t) = e−itA, with A = A∗, then Exercise 13.3 with t = 0 (and A tak-
ing the role of T ) shows that A ⊆ T . As both A and T are self-adjoint,
this implies that A = T . �

Exercise 13.7. Provide the omitted details in the first part of the proof.
More precisely, clearly state and then prove the properties of integrals
of the type

∫
ϕ(t) dt (where ϕ : R → H is a compactly supported

continuous function) that were used in the proof.

In fact, this proof has shown slightly more than originally stated. By
Exercise 13.3 again, the limit from the definition of D(S) exists for all
x ∈ D(T ), so S = T and the closure operation from the proof turns
out to be unnecessary. In other words, (13.1) gives a description of the
generator of U(t).

Once we know that every strongly continuous group has an infini-
tesimal generator, the statement of Exercise 13.3 becomes completely
general. It is of particular interest in quantum mechanics, so we for-
mulate it one more time.

Corollary 13.2. Let U(t) be a strongly continuous unitary group with
generator T . Suppose that ψ ∈ D(T ). Then U(t)ψ ∈ D(T ) for all
t ∈ R and ψ(t) ≡ U(t)ψ satisfies the (Hilbert space valued) differential
equation

i
dψ(t)

dt
= Tψ(t).

In the context of quantum mechanics, this is the famous (time-
dependent) Schrödinger equation. The self-adjoint operator T is called
the Schrödinger operator (mathematicians) or the Hamilton operator
(physicists) of the system. T is at the same time the observable energy
of the system, which is a satisfying analogy to the time evolution of
classical mechanics. We can reformulate (D):
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(D’) The time-evolved state ψ(t), while no measurement is per-
formed, obeys Schrödinger’s equation

i
d

dt
ψ(t) = Tψ(t),

for a self-adjoint operator T , which we call the Schrödinger operator of
the system.

This description of the dynamics of a quantum system is found in
most physics books. Note, however, that we have sacrificed some pre-
cision here: The Schrödinger equation can be taken at face value only
if ψ(0) ∈ D(T ); otherwise, one has to fall back on the unitary group
U(t) = e−itT . We can also say that with the help of the unitary group,
we can solve the Schrödinger equation, ψ(t) = e−itTψ(0), and this so-
lution has the added benefit that it works for all ψ(0) ∈ H. Of course,
this solution is not very explicit because e−itT is defined via the func-
tional calculus as e−itT =

∫
e−its dE(s), and typically it will not be easy

to obtain information on E for a given T .
Note also that only self-adjoint operators are admissible as Schrödin-

ger operators of quantum mechanical systems because only these can
be generators of unitary groups. In particular, it is not enough to just
come up with some symmetric operator and leave the matter at that.
Domain issues need to be discussed very carefully.

Our second set of mathematical results in this chapter will show
how to use spectral theory to obtain asymptotic information on the
dynamics in cases where a complete analysis of U(t) = e−itT is not
possible, which is all cases of interest minus perhaps one or two.

To keep matters digestible, we focus on one-particle systems right
away. Then the Hilbert space is usually taken to be H = L2(R3) or even
L2(R3)⊗C2 if we want to include electron spin. The variable x ∈ R3 is
interpreted as space. We will try to avoid some technical problems by
instead analyzing discrete analogs of these models. So we will work with
H = `2(Zd). Again, we want to interpret n ∈ Zd as position, so you
should think of a quantum mechanical particle whose position, if it were
measured, is restricted to the lattice points n = (n1, n2, . . . , nd) ∈ Zd.
We can be more explicit: the observable jth component of position
is the (unbounded) operator of multiplication by nj, on its natural
domain Dj = {ψ ∈ `2(Zd) : njψ(n) ∈ `2(Zd)}. Note that all these
operators commute for different values of j, so they are simultaneously
measurable.
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Exercise 13.8. This is a bit imprecise since our operators are unbounded
and thus commutators are plagued by domain issues. Show that nev-
ertheless there is a self-adjoint X ∈ B(H) such that Qj = fj(X) for
suitable Borel function fj, with Qj denoting the operator of multipli-
cation by nj. Suggestion: Take suitable functions of the Qj to make
them bounded.

Easier to deal with and more relevant for our purposes are the cor-
responding projection operators that describe the measurement of the
yes/no questions is the particle in M?, for M ⊆ Zd. These are given
by (PMψ)(n) = χM(n)ψ(n), with measurement result 1 corresponding
to the answer yes.

Exercise 13.9. Derive this from the description of the position ob-
servables that was given above. Suggestion: It suffices to do this
for M = M1 × . . .Md (or in fact for M = {m}). Show that then
PM = E1(M1) . . . Ed(Md), where Ej is the spectral resolution of the
jth component of the position operator, which is multiplication by nj.

Notice that PM indeed projects onto {ϕ ∈ `2 : ϕ(n) = 0 if n /∈ M};
in particular, PM is self-adjoint, as it must be according to (O). If the
system is in the state ψ ∈ `2, ‖ψ‖ = 1, and we measure PM , then the
probabilities are

p(1) = ‖PMψ‖2 =
∑
n∈M

|ψ(n)|2,

p(0) = ‖(1− PM)ψ‖2 =
∑
n/∈M

|ψ(n)|2.

As discussed, 1 means the particle is found in M , and 0 means the
particle is not found in M . So it turns out that |ψ(n)|2 has a direct
physical interpretation as the probability of finding the particle at site
n, if we choose to measure this observable (if we don’t measure it, then
of course any talk about the position of the particle is philosophically
risky, as we saw in the last chapter). This, in the continuous version, is
often called the Born rule, and this is the probabilistic component of
quantum mechanics that was historically discovered first; our axioms
(O), (C) are essentially due to von Neumann, and they were formulated
several years later.

Now suppose we prepare the system in a certain state ψ and we wait
a long time before we carry out such a measurement. Where will we,
most likely, find the particle? We now classify states according to their
long term dynamic behavior in this sense.

Let T be a self-adjoint operator on `2(Zd), thought of as the Schrö-
dinger operator of some quantum system. Evolve ψ ∈ `2, according to
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(D’), ψ(t) = e−itTψ, and denote the probability of finding the particle in
M at time t by pM(t) =

∑
n∈M |ψ(n, t)|2. We will also use the quantity

pM for not necessarily normalized ψ ∈ `2; then 0 ≤ pM ≤ ‖ψ‖2.

Definition 13.3. Let ψ ∈ `2(Zd). We call ψ a strong scattering state
if lim|t|→∞ pM(t) = 0 for every finite set M ⊆ Zd. If

lim
T→∞

1

2T

∫ T

−T
pM(t) dt = 0

for every finite set M ⊆ Zd, then we call ψ a weak scattering state. If
for every ε > 0, we can find a finite set M ⊆ Zd such that pMc(t) < ε
for all t ∈ R, then we call ψ a bound state.

We write Hss, Hws, Hb for the corresponding subsets of `2.

So, roughly speaking, if the system is in a scattering state, then the
particle will leave every bounded set if you just wait long enough. In
a weak scattering state, we can only make such a statement about the
time averaged probabilities. If the system is in a bound state, on the
other hand, it is essentially confined to a bounded set for all times.

Obviously, Hss ⊆ Hws. More can be said:

Proposition 13.4. Hss, Hws, and Hb are closed subspaces and `2 =
Hws ⊕Hb.

We postpone the proof because other results that we will develop
later will come in handy here.

We want to relate the dynamically defined subspaces Hss, Hws, Hb to
spectral subspaces, so we need to discuss this topic first. We do this in
an abstract setting.

So let T be a self-adjoint operator on a Hilbert space H. Recall that
a Borel measure ρ on R is called absolutely continuous if ρ(B) = 0 for
all Borel sets B ⊆ R of Lebesgue measure zero. By the Radon-Nikodym
Theorem, ρ is absolutely continuous if and only if dρ(t) = f(t) dt for
some density f ∈ L1

loc(R), f ≥ 0. If ρ is supported by a Lebesgue null
set (that is, there exists a Borel set B ⊆ R with m(B) = ρ(Bc) = 0),
then we say that ρ is singular. If ρ is even supported by a countable
set, then we call ρ a (pure) point measure. We call ρ continuous if
ρ({x}) = 0 for all x ∈ R, and a singular continuous measure is a
measure that is both singular and continuous (the standard example
being the Cantor measure).

Any Borel measure ρ on R can be uniquely decomposed into abso-
lutely continuous, singular continuous, and point parts:

(13.3) ρ = ρac + ρsc + ρpp
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Exercise 13.10. Derive this refined decomposition from Lebesgue’s de-
composition theorem (see, for example, Folland, Real Analysis, Theo-
rem 3.8), which says that we can, in a unique fashion, write ρ = ρac+ρs,
where ρac is absolutely continuous and ρs is singular. In other words,
you need to further break up ρs.

We now apply these notions to spectral measures to define the spec-
tral subspaces. We write dµx(t) = d‖E(t)x‖2 for the spectral measure
of T and x (we used to denote this by µx,x).

Definition 13.5. The absolutely continuous, singular continuous, and
pure point subspaces are defined as follows:

Hac = {x ∈ H : µx is absolutely continuous}
Hsc = {x ∈ H : µx is singular continuous}
Hpp = {x ∈ H : µx is a pure point measure}

Theorem 13.6. Hac, Hsc, Hpp are closed subspaces; in fact, they are
reducing subspaces for T . Moreover,

(13.4) H = Hac ⊕Hsc ⊕Hpp.

Proof. We first show that the H... are closed subspaces and that (13.4)
holds. We will make use of the following fact, or rather the version for
three subsets.

Exercise 13.11. Let A,B be subsets of a Hilbert space H and suppose
that A ⊥ B and H = A+B (that is, every x ∈ H can be written in the
form x = a+ b with a ∈ A, b ∈ B). Show that then A = B⊥, B = A⊥,
so A,B are closed subspaces and H = A⊕B.

Let x ∈ H, and decompose µx as in (13.3): µx = µac + µsc + µpp.
By the defining properties of the individual parts, we can find disjoint
Borel sets Sac, Ssc, Spp that support the corresponding µ’s. Then their
union supports µ (or we can just assume that this union is all of R), so

x = E(Sac ∪ Ssc ∪ Spp)x = E(Sac)x+ E(Ssc)x+ E(Spp)x.

Notice that, for example,

µE(Sac)x(M) = ‖E(M)E(Sac)x‖2 = ‖E(M ∩ Sac)x‖2

= µx(M ∩ Sac) = µac(M),

and similarly for the other parts, so E(Sj)x ∈ Hj for j = ac, sc, pp.
This proves that H = Hac + Hsc + Hpp. To prove that these sets are
orthogonal to each other, let x ∈ Hac, y ∈ Hsc, say. As above, the
corresponding spectral measures µx, µy admit disjoint supports Sx, Sy
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(because one measure is absolutely continuous, the other is singular).
It follows that

〈x, y〉 = 〈E(Sx)x,E(Sy)y〉 = 〈x,E(Sx)E(Sy)y〉 = 0.

An argument of this type works in all cases. We have proved (13.4).
To prove that these subspaces are reducing, we will use the criterion

from Exercise 11.28(a). So let P be the projection onto Hac, say; we
want to show that PT ⊆ TP . Notice that Theorem 11.18(c) implies
that

(13.5) E(A)T ⊆ TE(A)

for all Borel sets A ⊆ R.
Let x ∈ D(T ). Fix again a Borel set S ⊆ R that supports (µx)ac

and is given zero weight by the singular part of µx. Then, as above,
Px = E(S)x. Moreover, E(S)x ∈ D(T ), too, so x ∈ D(TP ) and
TPx = TE(S)x. By (13.5), this equals E(S)Tx, so it just remains to
show that E(S)Tx = PTx. Now (13.5) also implies that

(13.6) dµTx(t) = t2 dµx(t).

From the first part of the proof, we know that we can obtain P (Tx)
as E(M)(Tx), where the set M ⊆ R needs to be chosen such that it
supports the ac part of µTx and is given zero weight by the singular
part of the same measure. By (13.6), a set that works for x will also
work for Tx, so we can take M = S. �

It is useful to note that Hpp has an alternative description. As usual,
we call x ∈ H, x 6= 0 an eigenvector with eigenvalue t ∈ R if x ∈ D(T )
and Tx = tx.

Proposition 13.7. Hpp is the closed linear span of the eigenvectors of
T .

Exercise 13.12. Prove that x 6= 0 is an eigenvector with eigenvalue t if
and only if E({t})x = x.

Proof. If x is an eigenvector with eigenvalue t, then, by the Exercise,
x = E({t})x, so

µx(M) = ‖E(M)x‖2 = ‖E(M ∩ {t})x‖2

is supported by {t} and thus definitely a pure point measure. In other
words, x ∈ Hpp for all eigenvectors x. Since Hpp is a closed subspace,
this implies that the closed linear span of the eigenvectors is contained
in Hpp.
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Conversely, if x ∈ Hpp and {tj : j ∈ N} supports µx, then

(13.7) x = E({tj : j ∈ N})x = lim
N→∞

N∑
j=1

E({tj})x,

and by Exercise 13.12 again, this shows that x is in the closed linear
span of the eigenvectors. �

Exercise 13.13. Give a careful argument for the second equality in
(13.7).

We now return to the situation where H = `2(Zd) and consider the
dynamical subspaces from Definition 13.3.

Theorem 13.8. Hws = Hc, Hb = Hpp. Moreover, Hac ⊆ Hss.

Here, Hc denotes the continuous subspace Hc = Hac ⊕Hsc.

Exercise 13.14. Prove that x ∈ Hc if and only if µx is a continuous
measure.

Theorem 13.8 depends on two easy classical results on the Fourier
transform of measures; in fact, it could be argued that Theorem 13.8 is
essentially a rephrasing of these results. To see why Fourier transforms
are relevant here, denote the standard ONB of `2(Zd) by {δn : n ∈ Zd}.
So δn(m) = 1 if m = n and δn(m) = 0 otherwise. Write

µ̂(t) =

∫
R
e−its dµ(s)

for the Fourier transform of a finite (possibly complex) Borel measure
µ. Then

pM(t) =
∑
n∈M

∣∣〈δn, e−itTψ〉∣∣2 =
∑
n∈M

|ρ̂n(t)|2 ,

where we use the notation ρn(B) = 〈δn, E(B)ψ〉 for the (complex)
spectral measure associated with the vectors δn, ψ.

Here are the two results about Fourier transforms that will form the
basis of our discussion. Our measures are still assumed to be complex
Borel measures on R; in particular, they must be finite if they are
positive.

Theorem 13.9 (Riemann-Lebesgue Lemma). Let µ be an absolutely
continuous measure. Then lim|t|→∞ µ̂(t) = 0.

Theorem 13.10 (Wiener).

lim
T→∞

1

2T

∫ T

−T
|µ̂(t)|2 dt =

∑
x∈R

|µ({x})|2
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Existence of the limit is part of the statement in Wiener’s Theorem.
Note that µ({x}) 6= 0 for at most countably many x ∈ R, so there are
no difficulties involved in defining the sum. We will not use the formula
from Wiener’s Theorem, but the following immediate Corollary:

Corollary 13.11.

lim
T→∞

1

2T

∫ T

−T
|µ̂(t)|2 dt = 0

if and only if µpp = 0.

Exercise 13.15. Provide proofs of the Riemann-Lebesgue Lemma and
Wiener’s Theorem.

Proof of Theorem 13.8 and Proposition 13.4. Notice that

|ρn(B)| = |〈δn, E(B)ψ〉| ≤ ‖E(B)ψ‖,

so ρn � µψ. Thus, if ψ ∈ Hac, then the ρn (n ∈ Zd) are absolutely
continuous measures, too. The Riemann-Lebesgue Lemma now shows
that

pM(t) =
∑
n∈M

|ρ̂n(t)|2 → 0 (t→ ±∞)

for all finite M ⊆ Zd, so Hac ⊆ Hss.
A similar argument, with Corollary 13.11 replacing the Riemann-

Lebesgue Lemma, shows that Hc ⊆ Hws. Conversely, if ψ ∈ Hws, then
in particular

1

2T

∫ T

−T
|ρ̂n(t)|2 dt→ 0

for all n ∈ Zd, so, by Corollary 13.11 again, every ρn is a continuous
measure. But then µψ is a continuous measure, too, because if x ∈ R
is an arbitrary point, then

µψ({x}) = 〈ψ,E({x})ψ〉 =
∑

ψ(n)〈δn, E({x})ψ〉

=
∑

ψ(n)ρn({x}) = 0.

In other words, ψ ∈ Hc. This identification Hws = Hc also proves
that Hws is a closed (in fact: reducing, for T ) subspace, as claimed in
Proposition 13.4.

Next, we show directly that Hb is a closed subspace also. Obviously,
cψ ∈ Hb if ψ ∈ Hb, and the estimate∣∣〈δn, e−itT (ψ1 + ψ2)〉

∣∣2 ≤ 2
∣∣〈δn, e−itTψ1〉

∣∣2 + 2
∣∣〈δn, e−itTψ2〉

∣∣2
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makes it clear that also ψ1 +ψ2 ∈ Hb if ψ1,2 ∈ Hb. If ψj ∈ Hb, ψj → ψ,
and ε > 0 is given, pick first a j ∈ N such that ‖ψj −ψ‖2 < ε and then
M ⊆ Zd, M finite, so large that∑

n/∈M

∣∣〈δn, e−itTψj〉∣∣2 < ε

for all t ∈ R (and this j). Since∑
n∈Zd

∣∣〈δn, e−itTψj〉 − 〈δn, e−itTψ〉∣∣2 = ‖e−itT (ψj − ψ)‖2 = ‖ψj − ψ‖2,

by Parseval’s identity, it then follows that∑
n/∈M

∣∣〈δn, e−itTψ〉∣∣2 < 4ε

for all t ∈ R. Thus ψ ∈ Hb, and Hb is closed.

Exercise 13.16. Prove in a similar way that Hss is a closed subspace.

Next, let ψ be an eigenvector, with eigenvalue s, say. Then 〈δn, e−itTψ〉 =
e−ist〈δn, ψ〉, so

pMc(t) =
∑
n/∈M

|〈δn, ψ〉|2,

and Parseval’s identity ensures that this can be made arbitrarily small
by taking M sufficiently large. So all eigenvectors belong to Hb, and
Hb is a closed subspace, so Proposition 13.7 shows that Hpp ⊆ Hb.

Finally, we claim that Hb ⊥ Hws. To prove this, let ϕ ∈ Hb, ψ ∈ Hws.
Then

〈ϕ, ψ〉 = 〈e−itTϕ, e−itTψ〉 =
1

2T

∫ T

−T
〈e−itTϕ, e−itTψ〉 dt

=
1

2T

∫ T

−T

∑
n∈Zd

〈e−itTϕ, δn〉〈δn, e−itTψ〉 dt.

We split this sum into two parts, as follows. Given ε > 0, we can find
a finite set M ⊆ Zd such that ‖ψ‖2

∑
n/∈M |〈e−itTϕ, δn〉|2 < ε2 for all

t ∈ R. With the help of the Cauchy-Schwarz inequality and Parseval’s
identity, we thus see that∣∣∣∣∣∑

n/∈M

〈e−itTϕ, δn〉〈δn, e−itTψ〉

∣∣∣∣∣ < ε,

and thus the corresponding time averaged quantity is also < ε. Since

ψ ∈ Hws, we have 1/(2T )
∫ T
−T |〈δn, e

−itTψ〉|2 dt→ 0 for all n ∈ Zd. Now
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M is finite, so we can take T > 0 so large that also∣∣∣∣∣∑
n∈M

1

2T

∫ T

−T
〈e−itTϕ, δn〉〈δn, e−itTψ〉 dt

∣∣∣∣∣ < ε.

We again use the Cauchy-Schwarz inequality here, and in fact we use it
twice, to estimate the integral as well as the sum. Our estimates have
shown that |〈ϕ, ψ〉| < 2ε, and ε > 0 was arbitrary here, so 〈ϕ, ψ〉 = 0,
as claimed.

Put differently, we have seen that Hb ⊆ H⊥ws. We know already that
Hws = Hc (see the first part of this proof) and H⊥c = Hpp (see (13.4)),
so it follows that Hb ⊆ Hpp. �

The decomposition from Theorem 13.6 also induces decompositions
of the other quantities that are involved here. This makes use of the
fact that we have reducing subspaces. More specifically, we can write

T = Tac ⊕ Tsc ⊕ Tpp,
where, for example, Tac : Hac → Hac, D(Tac) = D(T ) ∩ Hac, and if
x ∈ D(Tac), then Tacx = Tx. We also define σj(T ) := σ(Tj), where
j = ac, sc, pp. As in Chapter 10 (see especially Proposition 10.9), we
then have

σ(T ) = σac(T ) ∪ σsc(T ) ∪ σpp(T ).

The union is not necessarily disjoint, as the following Example shows.
We will make use of the following fact, which is of considerable inde-
pendent interest.

Proposition 13.12. The (pure) point spectrum, σpp, is the closure of
the set of eigenvalues.

Recall that (much) earlier, we introduced the notation σp for the set
of eigenvalues; so we can now say that σpp = σp. In particular, σpp can
be much larger than σp.

Proof. Hpp contains all eigenvectors, so every eigenvalue of T is an
eigenvalue of Tpp also, so σp ⊆ σpp. Since σpp, being a spectrum, is
closed, we in fact obtain σp ⊆ σpp.

Conversely, if t ∈ σpp = σ(Tpp), then for any r > 0, we can find an
x = xr ∈ Hpp such that E((t− r, t+ r))x = x. Then µx is a pure point
measure, since x ∈ Hpp, and an s ∈ R with E({s}) 6= 0 is an eigenvalue
by Exercise 13.12, so this means that there are eigenvalues arbitrarily
close to t, so t ∈ σp. �

Example 13.1. This is in fact very easy from an abstract point of view.
We can start out with, let’s say, an absolutely continuous operator on
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one Hilbert space and a pure point operator on a second space and
then assemble these by taking the orthogonal sum.

For example, let H0 = L2(0, 1), (T0f)(x) = xf(x). Note that T0 ∈
B(H0), T0 = T ∗0 . In fact, T0 is already given as multiplication by the
variable, as in a Spectral Representation, so the spectral theory of T0
is easy to work out. I claim that Hac = H0 for this operator. Indeed,
if f ∈ H0 is arbitrary, then

µf (M) = ‖E(M)f‖2 =

∫
|χMf |2 dx.

In this context, recall the discussion following Proposition 10.10, where
the spectral resolution was identified as E(M)f = χMf . So dµf =
|f |2dx, and, as claimed, all spectral measures are absolutely continuous.
Finally, notice that σ(T0) = [0, 1].

Next, let H1 be an arbitrary separable Hilbert space. Let {xn} be
an ONB of H1, and fix an enumeration {qn} of Q ∩ [0, 1]. Define
T1xn = qnxn and extend linearly.

Exercise 13.17. Prove that T1 is bounded on L(xn) and thus extends

continuously to L(xn) = H1. Show that (the extended) T1 ∈ B(H1),
H1 = Hpp, σ(T1) = [0, 1].

We can now let H = H0 ⊕ H1, T = T0 ⊕ T1. Then, basically by
construction, T0 and T1 are the absolutely continuous and pure point
parts, respectively, of T . In particular, σac(T ) = σpp(T ) = [0, 1].

Exercise 13.18. Let T be self-adjoint. Prove that every isolated point
of σ(T ) is an eigenvalue of T .

Exercise 13.19. Let H = Cn be a finite-dimensional Hilbert space.
Show that then Hpp = H, Hac = Hsc = 0 for every self-adjoint T on
H.

Exercise 13.20. Let P be the projection onto the closed subspace M ⊆
H, and let T ∈ B(H) be self-adjoint, T =

∫
t dE(t). Prove that M is

a reducing subspace for T if and only if PE(B) = E(B)P for all Borel
sets B ⊆ R.
Hint: By Exercise 11.21(a), M is reducing if and only if PT = TP .
Remark: The statement also holds for unbounded self-adjoint T , but
the proof becomes more technical in this case.

Exercise 13.21. Let T ∈ B(H) be self-adjoint. Show that a closed
invariant subspace M (so Tx ∈M for x ∈M) is reducing.

Exercise 13.22. Let µ be a finite (positive) Borel measure on R, with
Lebesgue decomposition µ = µac+µsc+µpp. Consider the (self-adjoint)
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operator of multiplication by the variable on L2(R, µ):

D(Mt) = {f ∈ L2(µ) : tf(t) ∈ L2(µ}, (Mtf)(t) = tf(t)

Prove that Hj may be naturally identified with L2(R, µj), for j =
ac, sc, pp. More precisely, proceed as follows: Pick disjoint supports Sj
of µj, and show that Pjf = χSj

f , where Pj denotes the projection onto
Hj (j = ac, sc, pp). Given this, we then indeed have

Hj = {f ∈ L2(µ) : f = 0 µ-a.e. on Scj},
which may be identified with L2(Sj, µ) and also with L2(R, µj).


