
2. Groups

2.1. Groups and monoids. Let’s start out with the basic definitions.
We will consider sets with binary operations, which we will usually
write multiplicatively, as a · b, or, more commonly, just ab.

Before we proceed, let me make a few quick remarks on the terminol-
ogy: we already encountered relations, which accept a fixed number of
arguments and then output a truth value, true or false. An operation
on a set also expects a fixed number of inputs, but it outputs another
element of the set. We call relations and operations unary, binary,
tertiary, and so on, according to the number of arguments they take.

Definition 2.1. (a) A semigroup is a set S with an associative binary
operation: (ab)c = a(bc) for all a, b, c ∈ S.
(b) A monoid is a semigroup M that has an identity (or neutral ele-
ment): there exists e ∈M such that ea = ae = a for all a ∈M .
(c) An element a of a monoid is called invertible if there exists a b ∈M
such that ab = ba = e. A group is a monoid in which every element is
invertible.

Here are two quick general observations: The neutral element of a
monoid M is unique because if e, e′ are both neutral elements, then
e = ee′ = e′. It is common to denote it by 1 (rather than e).

Exercise 2.1. Show that similarly, if a is an invertible element of a
monoid, and if ab = ba = 1 and also ab′ = b′a = 1, then b = b′. (In
particular, this hold for every element of a group.)

We call this unique b the inverse of a and denote it by b = a−1.
Let’s now look at a few examples: N = {1, 2, 3, . . .} with addition

mn := m + n is a semigroup because addition is associative. If we
include zero, then we obtain the monoid (N0,+) (using self-explanatory
notation), with the neutral element e = 0. If we also include the
negative integers, then we obtain the group (Z,+); the inverse of n ∈ Z
is −n, since n + (−n) = (−n) + n = 0. These examples have the
additional property that ab = ba for any two a, b. We say that these
semigroups (monoids, groups) are commutative; in the case of groups,
it is more common to speak of abelian groups. In abelian groups G,
we often deviate from our notational convention and write the group
operation as addition, as in a + b, and we denote the neutral element
by 0.

The above examples still work if the arithmetic is done modulo k.
More precisely, (Zk,+) is an abelian group. Indeed, you showed in
Exercise 1.11 that addition on Zk is (well defined and) associative and
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10 Christian Remling

commutative, and (0) is a neutral element. Moreover, (n) + (−n) =
(n+ (−n)) = (0), so every (n) ∈ Zk is invertible, with inverse (−n).

If we instead use multiplication as the operation on Zk, then we still
obtain a (commutative) monoid, by Exercise 1.11 again. The multi-
plicative identity element is of course given by e = (1). This time
(Zk, ·) is not a group (if k ≥ 2) because 0a ≡ 0 mod k for all a, so
0 is not invertible. To try to fix this, let’s remove zero and consider
Z×k = Zk \ {(0)}.

Exercise 2.2. (a) Show that if p is a prime, then Z×p is still a monoid;

show also that if k ≥ 4 is composite, then there are a, b ∈ Z×k with
ab ≡ 0 mod k, so multiplication isn’t even defined as an operation on
Z×k in this case.

(b) Use Proposition 1.9 to show that if p is prime, then Z×p is in fact
a group.

For an example of a non-commutative monoid or group, we can con-
sider the collection of n × n matrices with entries in, say, R. We
denote this set by Mn(R). Matrix multiplication is associative, so
Mn(R) is a semigroup and in fact a monoid with identity element
e = diag(1, 1, . . . , 1). Since matrix multiplication can depend on the
order of the factors, this monoid is not commutative for n ≥ 2.

Exercise 2.3. Give an explicit example of two matrices A,B ∈ M2(R)
with AB 6= BA.

Since there are non-invertible matrices, Mn(R) is not a group. How-
ever, if we only keep the invertible matrices, then this smaller set

GL(n,R) = {A ∈Mn(R) : A invertible }
is a (non-abelian, if n ≥ 2) group. The notation refers to the usual
name general linear group for this group. Recall also from linear algebra
that an A ∈Mn(R) is in GL(n,R) precisely if detA 6= 0.

Another class of examples is obtained by considering maps (or func-
tions) f : X → X on some set X 6= ∅. The collection of all such maps
becomes a monoid under composition of functions (f ◦g)(x) = f(g(x)),
and with the identity function 1(x) = x as the neutral element. (Since
matrices may be identified with linear maps on Rn, the previous exam-
ples Mn, GL(n) are actually of this type.)

Exercise 2.4. Show that this is indeed associative, that is, (f ◦ g) ◦h =
f ◦ (g ◦ h).

Exercise 2.5. Show that an f is invertible in this monoid precisely
if f is bijective. (Note that there is some clash of terminology here:
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usually, one calls a function invertible if it has an inverse function on
some possibly smaller domain, and this condition is equivalent to the
function being injective.)

Again, we can obtain a group by only keeping the bijective functions
f : X → X. Of particular interest is the case of a finite set X, and
then we can just set X = {1, 2, . . . , n}, for convenience. The bijective
functions π : {1, . . . , n} → {1, . . . , n} are also called permutations, and
the corresponding group of all permutations on the first n numbers is
denoted by Sn and is called the symmetric group.

Exercise 2.6. Show that Sn is abelian precisely if n = 1 or n = 2.

Exercise 2.7. Let G be a group, a, b ∈ G. Show that (a−1)−1 = a and
(ab)−1 = b−1a−1.

Exercise 2.8. (a) Let G be a group. Suppose that a, b ∈ G, ab = 1.
Show that then a = b−1, b = a−1.
(b) Now let M be a monoid. Suppose that a, b ∈ M , ab = 1. Show
that it does not follow that a, b are invertible, by providing suitable
counterexamples.
(c) Make sure you understand completely why (a), (b) don’t contradict
each other.

The procedure we used above to extract a group from a monoid
works in general:

Exercise 2.9. Let M be a monoid, and let U(M) be the set of its
invertible elements (“units”). Show that U(M) is a group. (What
exactly do you need to show here?)

Exercise 2.10. Which of the following sets A are groups (monoids, semi-
groups) with the specified operation?
(a) A = Z, ab := a · b (multiplication in Z);
(b) fix a set B and let A = P (B), the power set of B (= the collection
of all subsets of B), ab := a ∪ b;
(c) A = P (B), ab = a \ b;
(d) A = N, ab = gcd(a, b);
(e) A = N, ab = lcm(a, b) (the least common multiple of a, b)

Exercise 2.11. In the previous Exercise, in those examples that define
monoids, find the group of invertible elements.

Exercise 2.12. (a) Show that in a group G, given a, b ∈ G, the equations
ax = b and ya = b have (in fact, unique) solutions x, y ∈ G.

(b) Let S be a semigroup. Show that, conversely, S will be a group if
for any a, b ∈ S, the equations ax = b and ya = b always have solutions
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x, y ∈ S. Suggestion: Start out by showing that there are left and right
identities, that is, there are 1L, 1R ∈ S such that 1La = a1R = a for all
a ∈ S.

Associativity allows us to drop parentheses: if a, b, c lie in a semi-
group S, then we can unambiguously write abc because the (in princi-
ple) two ways of evaluating this product, (ab)c and a(bc), give the same
answer. The same property holds for products of arbitrary length:
a1a2 . . . an always has the same value, no matter where we put the
parentheses.

This is unsurprising and can be checked easily in concrete examples.
For example, why is a((bc)d) the same as, say, ((ab)c)d? Well, we just
repeatedly apply associativity in its basic version, for three factors, to
obtain that

a((bc)d) = (a(bc))d = ((ab)c)d,

as desired.

Exercise 2.13. List all possibilities of putting parentheses in a prod-
uct with four factors (your list should have five entries), and convince
yourself that these are all equal to one another.

Now let’s try to do the general case of a product a1a2 . . . an with n
factors. We will proceed by induction on n. For n = 3, this is just the
original associative law (= basis of our induction). For the inductive
step, assume associativity for products with ≤ n − 1 factors. It is
convenient to temporarily agree that a product with no parentheses will
be evaluated from left to right, that is, a1 . . . an = (. . . ((a1a2)a3) . . . an).
We will now show that any method of evaluating the product gives the
same answer a1 . . . an.

Evaluate the individual product that comes first. We might have to
make a choice here, in examples such as (ab)(cd); in this case, take the
leftmost of these products (ab in the example). Let’s say p = akak+1

is the product we evaluated. This now leaves us with a product of
the form a1 . . . ak−1pak+2 . . . an, with parentheses (!), with one fewer
factor, so the induction hypothesis applies and we may ignore those
invisible parentheses and evaluate this from left to right anyway. Let’s
focus on the first part of this evaluation, until the moment when we
reach p. The overall structure of this product is qp = q(akak+1), where
q = a1 . . . ak−1. Now by associativity for three factors, we have that
qp = (qak)ak+1, but this is just a1 . . . ak+1, so our claim follows.

Exercise 2.14. What happens to this argument if k = 1? Convince
yourself that this case can be handled, too.
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This whole treatment provides a rather typical example of a kind of
argument that comes up with some regularity. The statement that we
established (generalized associativity) looks very obvious, so it ought to
have a very quick and easy proof, and indeed no brilliant unexpected
ideas are needed, but it actually turns out that organizing a clean
formal argument requires some care and mental tidiness.

2.2. Isomorphisms and Cayley’s Theorem. We first need a few
definitions. Let’s start with the notion of an isomorphism. We think of
isomorphic structures as being the same, except possibly for the names
you gave to their elements. An isomorphism is a map that implements
this identification. In our setting, it must in particular preserve the
algebraic structure, and maps of this type are called homomorphisms.
In the case of monoids and groups, this takes the following form.

Definition 2.2. Let M,M ′ be (both) monoids or (both) groups with
identity elements 1 and 1′, respectively. A map ϕ : M → M ′ is called
a homomorphism if ϕ(1) = 1′ and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈M .

In the case of groups, we also have inverses as part of the algebraic
structure, and we want our maps to preserve this, too, in the sense that
ϕ(a)−1 = ϕ(a−1) for all a ∈ G. This doesn’t have to be imposed as an
extra condition, though; it follows automatically.

Proposition 2.3. If ϕ : M → M ′ is a homomorphism and a ∈ M
is invertible, then so is ϕ(a) and ϕ(a)−1 = ϕ(a−1). In particular, this
holds for every element of a group.

Proof. Apply ϕ to all members of aa−1 = a−1a = 1 to obtain that

ϕ(a)ϕ(a−1) = ϕ(a−1)ϕ(a) = 1′,

and this says that ϕ(a) is invertible in M ′ with inverse ϕ(a−1). �

In fact, in the case of groups, it is also possible to drop the require-
ment that ϕ(1) = 1′ from Definition 2.2:

Exercise 2.15. (a) Let G,G′ be groups and let ϕ : G → G′ be a map
satisfying ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G. Show that then ϕ(1) = 1′.

(b) However, show that if ϕ is a map as in part (a) between monoids,
then it can happen that ϕ(1) 6= 1′.

Definition 2.4. An isomorphism is a bijective homomorphism. Monoids
or groups are called isomorphic if there is an isomorphism between
them.
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So in addition to preserving the algebraic structure, an isomorphism
also preserves the underlying set; in other words, it preserves the com-
plete structure of a monoid or group. Observe also that if ϕ : G→ G′ is
an isomorphism between groups or monoids, then so is the inverse map
ϕ−1 : G′ → G, so the condition of being isomorphic is symmetric in
G,G′, as was already suggested by the way we phrased the definition.

Exercise 2.16. Show that if ϕ : G→ G′ is an invertible homomorphism,
then ϕ−1 : ϕ(G)→ G is a homomorphism, too.

We write G ∼= G′ to express the fact that G,G′ are isomorphic.

Exercise 2.17. Show that ∼= is an equivalence relation between groups.

Example 2.1. I claim that the groups (R,+) and (R+, ·) are isomor-
phic. Here, R+ = (0,∞) denotes the positive real numbers. (Convince
yourself that these are indeed groups.) An isomorphism is given by the
exponential function ϕ : R → R+, ϕ(x) = ex. This map is indeed
bijective, by the elementary properties of the exponential function,
and it is a homomorphism because ϕ(xy) = ex+y, which is equal to
ϕ(x)ϕ(y) = exey, as required.

Exercise 2.18. Give a very careful and explicit interpretation of this
set of formulae. Note that ab may refer to multiplication in the group,
which, to make it more confusing, really is addition in the case of
(R,+), or it may denote multiplication as real numbers.

On the other hand, the groups (R,+) and GL(2,R) are not iso-
morphic. This follows because the first group is abelian while the
second one isn’t (remember: isomorphic groups are really the same
abstract structure, except possibly for the names given to the ele-
ments). More formally, if A,B ∈ GL(2,R), then any homomorphism
ϕ : GL(2,R) → R has to map AB and BA to the same real number
because

ϕ(AB) = ϕ(A) + ϕ(B); ϕ(BA) = ϕ(B) + ϕ(A)

and addition of real numbers is commutative, of course. Since there
are A,B so that AB 6= BA, this means that there aren’t any injective
homomorphisms.

Exercise 2.19. Consider the nth roots of unity

G =
{

1, e2πi/n, e2πi·2/n, . . . , e2πi(n−1)/n
}

(in other words, these are the n complex solutions of zn = 1), with
multiplication as complex numbers as the operation.
(a) Show that G is a group.
(b) Show that G is isomorphic to (Zn,+).
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Let G be a group. A subgroup of G is, by definition, a subset H ⊆
G that is a group itself, with the same operation as G. Of course,
associativity carries over automatically fromG, so we needH to contain
1 and whenever a, b ∈ H, we must have that ab ∈ H and a−1 ∈ H. A
slightly more elegant formulation is possible:

Proposition 2.5. Let G be a group. A subset H ⊆ G, H 6= ∅, is a
subgroup of G precisely if a, b ∈ H implies that also ab−1 ∈ H.

Proof. Clearly a subgroup has this property because neither inverses
nor products lead us out of H. Conversely, if ab−1 ∈ H whenever
a, b ∈ H, then 1 = aa−1 ∈ H. So, taking a = 1, we now see that if
b ∈ H, then also b−1 = 1b−1 ∈ H. Finally, if a, b ∈ H, then b−1 ∈ H,
as we just saw, so ab = a(b−1)−1 ∈ H by assumption. �

Of course, there is an analogous notion of a submonoid of a given
monoid M . More precisely, we call N ⊆M a submonoid if 1 ∈ N and
ab ∈ N whenever a, b ∈ N .

Another useful observation is that if ϕ : G→ G′ is a homomorphism,
then the image ϕ(G) = {ϕ(a) : a ∈ G} is a subgroup of G′.

Exercise 2.20. Prove this.

Recall from the previous section that if X is any (non-empty) set,
then the functions f : X → X form a monoid with composition as
the operation, and the bijective functions form a group. Let us denote
these by M(X) and S(X), respectively. Cayley’s theorem says that
any group can be realized as a subgroup of S(X), for a suitable set X
(in fact, we are going to take X = G in the proof below). An analogous
statement holds for monoids, but we won’t make this explicit. We also
call such a subgroup of S(X) a group of transformations.

Theorem 2.6 (Cayley). Let G be a group. Then G is isomorphic to
a group of transformations.

Proof. As already announced, we will, more specifically, set up an in-
jective homomorphism ϕ : G → S(G). As observed above, the image
ϕ(G) will then be a subgroup of S(G); it will be the group of transfor-
mations we are looking for. Indeed, ϕ considered as a map from G to
ϕ(G) is an isomorphism, so we are done as soon as we have such a ϕ.

Define ϕ(a)(x) = ax. This map ϕ(a) : G→ G is injective because if
ax = ay, then by multiplying by a−1 from the left, we see that x = y,
and ϕ(a) is also surjective because if b ∈ G is given, then ϕ(a)(a−1b) =
aa−1b = b. So ϕ(a) is bijective; in other words, ϕ(a) ∈ S(G).

I now claim that ϕ is an injective homomorphism. Certainly ϕ is
injective because if ϕ(a) = ϕ(b), then in particular ϕ(a)(1) = ϕ(b)(1),
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but these equal a and b, respectively, by the definition of ϕ, so a = b.
To verify that ϕ is a homomorphism, let a, b ∈ G. Then

(2.1) ϕ(ab)(x) = (ab)x = a(bx) = ϕ(a)(ϕ(b)(x)).

The right-hand side may be interpreted as the composite function ϕ(a)◦
ϕ(b), applied to x. Since (2.1) holds for all x ∈ G, it follows that
ϕ(ab) = ϕ(a) ◦ ϕ(b), and since composition is the group operation on
S(G), this says that ϕ is a homomorphism. �

Corollary 2.7. Any finite group is isomorphic to a subgroup of Sn.

Recall that the symmetric group Sn was defined as the group of
permutations on n symbols. Corollary 2.7 really follows from the proof
of Cayley’s Theorem that was given (not from the statement, at least
not immediately); we also obtain that we can take n = |G|, the number
of elements of G.

Exercise 2.21. Formulate and prove the version of Cayley’s Theorem
for monoids.

Exercise 2.22. Show that the transition to a subgroup is necessary in
general. In other words, find a group G that is not isomorphic to the
full group S(X) for any set X.

Exercise 2.23. Let H1, H2 6= G be two subgroups of a group G. Show
that H1 ∪H2 6= G.

2.3. Subgroups and cyclic groups. Given a group G and an arbi-
trary subset S ⊆ G, there is always a smallest subgroupH = H(S) ⊆ G
that contains S. More explicitly, the defining properties of H are: (i)
H ⊇ S; (ii) H is a subgroup of G; (iii) if H ′ also satisfies (i), (ii), then
H ′ ⊇ H.

We first need to make sure that such an object H = H(S) indeed
always exists (if you’re not convinced that something needs to be shown
here, then compare the description of H with the formally analogous
but nonsensical “the smallest infinite subset of N that contains 5353”).

Lemma 2.8. If the Hα ⊆ G are subgroups of G, then so is
⋂
αHα.

Proof. This is immediate from the criterion from Proposition 2.5: Write
H =

⋂
Hα. If a, b ∈ H, then a, b ∈ Hα for each α, so ab−1 ∈ Hα because

Hα is a subgroup, so ab−1 ∈ H, as required.
Note also that the intersection is non-empty because 1 ∈ Hα for all

α, so 1 is in it. �

Given a subset S ⊆ G, we can now let H(S) =
⋂
H ′, where the

intersection is over all subgroups H ′ of G with H ′ ⊇ S. Observe that
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one possible choice is H ′ = G, so there are such subgroups H ′ and the
intersection is not over the empty collection. By the Lemma, this set
H(S) is a subgroup of G, and it also satisfies properties (i), (iii).

Exercise 2.24. Check this in (slightly) more detail.

We will also use the alternative notation 〈S〉 instead of H(S); if
S = {s1, . . . , sn} is finite, we will usually write 〈s1, . . . , sn〉 instead of
the formally correct, but too pedantic 〈{s1, . . . , sn}〉.

The procedure just given builds 〈S〉 from the top down, so to speak,
by starting with H ′ = G and then cutting it down to size. We can
also build 〈S〉 from the bottom up. We do this by successively putting
elements into a set H, but only those that we are sure must definitely
be in H = 〈S〉.

Now clearly, we must have s ∈ H for all s ∈ S and also 1 ∈ H. Next,
we must be able to take products and inverses in the subgroup we are
looking for, so we must also insist that s1s2 . . . sn ∈ H if sj ∈ H or
s−1j ∈ H for each j (I got these expressions by taking inverses and/or
products finitely many times, starting out from the elements of S).
Then we must demand that expressions formed with the help of inverses
and products from these words s1s2 . . . sn lie in H, and whatever we
get from this can then be made the starting point of a fresh round of
operations etc. We now become worried that this process will never
stop, but fortunately that is not the case and in fact we have reached
the finish line already:

Proposition 2.9. Let S ⊆ G. Then

(2.2) 〈S〉 = {s1s2 . . . sn : n ≥ 0, sj or s−1j ∈ S}

For n = 0, we interpret this (empty) product as 1.

Proof. Denote the set on the right-hand side of (2.2) byH. We compare
H with the description 〈S〉 =

⋂
H ′ that was given above. If H ′ ⊇ S

is any subgroup that contributes to the intersection, then clearly H ′

must contain all the products from (2.2). Thus 〈S〉 ⊇ H.
On the other hand, H is a subgroup because if p, q are products as

in (2.2), then pq−1 is again of this form. Moreover, H ⊇ S, by just
taking n = 1 in (2.2). So H is a subgroup containing S, and since 〈S〉
is the smallest such group, this shows that 〈S〉 ⊆ H. �

Depending on what structure exactly you want to build, this kind of
procedure (start with the generating set, keep applying the operations
that our structure is supposed to be closed under) may or may not
stabilize after finitely many steps. An example of the second type that
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you may be familiar with from Real Analysis is provided by the notion
of a σ-algebra generated by a collection of subsets (for example the
Borel σ-algebra on R): you start out with the open sets, then you take
countable intersections and complements of these sets, then, in the next
round, you apply these same operations to the sets you just obtained,
etc. etc. It just never stops; the sets keep getting more complicated
(you can still build the Borel σ-algebra from the bottom up, but you
need ordinals for this).

Let’s now return to our discussion of 〈S〉. The simplest example of
this should be that of a subgroup 〈a〉 generated by just one element
a ∈ G. We call 〈a〉 the cyclic subgroup generated by a. Similarly, we
call a group G a cyclic group if G = 〈a〉 for some a ∈ G.

It will be convenient to use (almost self-explanatory) exponential
notation. We denote by an = aa . . . a the n-fold product of a with
itself. This is well defined, for n ≥ 1, by general associativity. In fact,
we can naturally define an for arbitrary n ∈ Z, by putting a0 := 1 and,
for n < 0, an := (a−1)|n|.

Exercise 2.25. Show that we have the power laws am+n = aman and
(am)n = amn for arbitrary m,n ∈ Z.

Exercise 2.26. Is it also always true that (ab)n = anbn for n ∈ Z and
a, b ∈ G for an arbitrary group G?

From Proposition 2.9 and Exercise 2.25, it is then clear that

〈a〉 = {an : n ∈ Z}.
From this and Exercise 2.25 again, we obtain the surjective homomor-
phism

ϕ : (Z,+)→ 〈a〉, ϕ(n) = an.

Either ϕ is also injective and thus an isomorphism, or am = an for some
m,n ∈ Z, m 6= n. In the first case, 〈a〉 ∼= Z.

In the second case, suppose that n > m. Then an−m = 1, that is,
we also find a positive integer k with ak = 1. Now let k ≥ 1 be the
smallest such integer. Then I claim that

〈a〉 = {1, a, a2, . . . , ak−1}, 〈a〉 ∼= Zk;
this includes the claim that the k powers of a that are listed are all
distinct. This latter claim is indeed clear because if we had am = an,
then, as we just saw, also am−n = 1, so if we had 0 ≤ m,n ≤ k−1 here
and m 6= n, then we would obtain an integer d = m− n or d = n−m
with 0 < d < k and ad = 1, and this contradicts the definition of k.

It remains to show that for arbitrary n ∈ Z, we have that an = ar

for some 0 ≤ r < k. To do this, we divide n by k with remainder: we
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write n = qk + r, and here q ∈ Z, 0 ≤ r < k. Then, by the power laws
from Exercise 2.25, an = aqkar = (ak)qar = ar, as desired.

Finally, an isomorphism between 〈a〉 and Zk in this situation is set
up by mapping an 7→ n.

Exercise 2.27. Verify that this indeed defines an isomorphism.

We summarize:

Theorem 2.10. Let G = 〈a〉 be a cyclic group. Then G ∼= Zk or
G ∼= Z. In the first case, G = {1, a, a2, . . . , ak−1}; in the second case,
the powers an, n ∈ Z, are all distinct.

Cyclic groups are the groups that are easiest to study, and we will
establish more results about them in a moment. Let me first introduce
some terminology. If G is a finite group, the order of G refers to the
number of elements of G. We usually denote it by |G|. If a ∈ G is
an element of an arbitrary group and an = 1 for some n ∈ Z, n 6= 0,
then we say that a has finite order, and we define the order of a as
the smallest positive integer n with an = 1. In this case, we also write
o(a) = n. Note that if o(a) = n, then the cyclic group generated by a
has the same order, |〈a〉| = n, so these two notions of an order are to
some extent compatible.

Exercise 2.28. (a) Show that an = 1 precisely if a−n = 1.
(b) Give an example of a group in which no non-identity element has
finite order.
(c) Suppose that o(a) = n. Show that ak = 1 precisely if n|k.

Theorem 2.11. (a) The subgroups of Z are precisely the groups 〈k〉 =
{kn : n ∈ Z}, k = 0, 1, 2, . . ..

(b) If |〈a〉| = t, then for every divisor n|t, 1 ≤ n ≤ t, there is exactly
one subgroup of G = 〈a〉 of order n, and there are no other subgroups
of G.

Proof. (a) If H ⊆ Z is a subgroup, then either H = {e} = {0}, corre-
sponding to k = 0, or H contains non-identity elements. In this case,
let k ≥ 1 be the smallest positive element of H (why are there positive
elements in H?). We can now repeat an argument we already used
above, in a slightly different context, to see that H = {kn : n ∈ Z}:
Clearly, kn, which is an |n|-fold sum of k ∈ H or (if n < 0) −k ∈ H,
must be in H. On the other hand, for any m ∈ H, we can write
m = kn + r with 0 ≤ r < k (division by k with remainder). Since
m, kn ∈ H, it follows that r ∈ H as well, but this forces r = 0 by the
definition of k, so m = kn, as claimed.

Conversely, it is clear that 〈k〉 is a subgroup of Z.
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Part (b) is similar. If H ⊆ 〈a〉, H 6= {1} is a subgroup, we can again
define k as the smallest positive integer with ak ∈ H. In fact, we can
also show, in the same way as in part (a), that H = 〈ak〉. I now claim
that k|t. To see this, we again write t = qk+r, 0 ≤ r < k. Since at = 1
and ak ∈ H, we also have that ar ∈ H, so r = 0 from the definition of
k, as desired. So we can write t = qk now. This means that we can list
the elements of H as

H = 〈ak〉 = {1, ak, a2k, . . . , a(q−1)k}.
So |H| = q, and this divides t, as claimed. We also see from this
that the subgroup H is completely determined by k, so two different
subgroups must have distinct k’s and thus also distinct q’s, and thus
there is exactly one subgroup of order q for each q|t. �

Exercise 2.29. Let G = 〈a〉 be a cyclic group of finite order |G| = qk.
Show that the (unique) subgroup of order q consists of exactly those
elements b ∈ 〈a〉 with bq = 1.

The next result will be important later on, in the theory of fields.

Definition 2.12. Let G be a group. If there exists n ≥ 1 such that
an = 1 for all a ∈ G, then the smallest such n is called the exponent of
G and is denoted by exp(G).

Exercise 2.30. Let G be a finite group. Show that exp(G) is the least
common multiple of o(a), a ∈ G.

Exercise 2.31. Can you give an example of: (a) a (necessarily infinite)
group all of whose elements have finite order, but there is no n ≥ 1
such that an = 1 for all a ∈ G; (b) an infinite group that has a finite
exponent?

Theorem 2.13. Let G be a finite abelian group. Then G is cyclic if
and only if exp(G) = |G|.

Proof. Clearly, if G is finite and cyclic, say G = 〈a〉, then a|G| = 1,
but an 6= 1 for 1 ≤ n < |G|. Since also an|G| = 1, this says that
exp(G) = |G|, as claimed.

The proof of the converse will be based on two lemmas that are of
some independent interest.

Lemma 2.14. Let a, b be elements of an abelian group, of finite orders
o(a) = m, o(b) = n, and suppose that (m,n) = 1. Then o(ab) = mn.

Proof of Lemma 2.14. First of all, (ab)mn = amnbmn = 1. Here, we use
that a, b commute; as you showed in Exercise 2.26, this computation
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would not be correct in a general group. So ab has finite order, and
o(ab)|mn, by Exercise 2.28(c).

On the other hand, if (ab)k = akbk = 1, then ak = b−k ∈ 〈a〉 ∩ 〈b〉. I
now claim that

(2.3) 〈a〉 ∩ 〈b〉 = {1}.
This will give the Lemma because it shows that ak = b−k = 1, so
m|o(ab), n|o(ab), by Exercise 2.28(c) again. Since m,n are relatively
prime, it follows that mn|o(ab).

It remains to establish (2.3). Let c be from the intersection, so
c = ak = bj for suitable k, j ≥ 0. Then cm = amk = 1 and similarly
cn = 1, so o(c)|m, o(c)|n, but since (m,n) = 1, this says that o(c) = 1
or, equivalently, c = 1. �

Exercise 2.32. Show that 〈a, b〉 = 〈ab〉 in the situation of Lemma 2.14.

Exercise 2.33. Show that the statement of Lemma 2.14 can fail in non-
abelian groups.

Lemma 2.15. Let G be a finite abelian group. Then there exists an
element a ∈ G such that o(b)|o(a) for all b ∈ G.

Proof of Lemma 2.15. We will show that given a, b ∈ G, we can find
a c ∈ G so that o(a), o(b)|o(c). This will give the full claim because if
G = {g1, . . . , gn}, then we can apply this step first to g1, g2 to produce
an element c1 whose order is a multiple of the orders of g1, g2, then we
apply it to g3, c1 to produce c2, then to g4, c2 and so on.

So write m = o(a), n = o(b), and factor these integers into primes:

m = pe11 p
e2
2 · · · p

eN
N , n = pf11 p

f2
2 · · · p

fN
N ,

with ej, fj ≥ 0. For convenience, we can assume that these are labeled
in such a way that ej ≤ fj for j = 1, 2, . . . , k and ej > fj for j =
k + 1, . . . , N , for some 0 ≤ k ≤ N . Now let

r = pe11 · · · p
ek
k , s = p

fk+1

k+1 · · · p
fN
N

(where, as usual, we interpret an empty product as 1). Then the in-
tegers m/r and n/s are relatively prime. Moreover, o(ar) = m/r,
o(bs) = n/s, so Lemma 2.14 may be applied to these two elements, and
it follows that

o(arbs) = (m/r)(n/s) = pf11 · · · p
fk
k p

ek+1

k+1 · · · p
eN
N .

In other words, each prime now has the larger of the two exponents on
offer, and thus this number is a multiple of both m and n (in fact, it
is the least common multiple), and we can take c = arbs. �
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So let’s return to the proof of Theorem 2.13 now. Suppose that
exp(G) = |G|. Let a ∈ G be as in Lemma 2.15. Then bo(a) = 1 for
all b ∈ G, and o(a) is in fact the smallest positive integer with this
property for the simple reason that no smaller integer works for b = a.
In other words, o(a) = exp(G), so o(a) = |G|, and this says that the
cyclic subgroup 〈a〉 ⊆ G has the same order as G, so it must in fact be
all of G. �

2.4. Cosets. Let H ⊆ G be a subgroup of a group G. A set of the
form aH = {ab : b ∈ H}, with a ∈ G fixed, is called a (left) coset;
similary, Ha is called a right coset. Let’s focus on left cosets for now;
of course, analogous observations will apply to right cosets. I claim
that the collection of all cosets aH, a ∈ G, forms a partition of G.

Obviously, every a ∈ G is in some coset (namely, aH), so what we
must show is that for any two cosets, we have either aH = bH or
aH ∩ bH = ∅. To confirm this, suppose that aH ∩ bH 6= ∅, let’s say
c ∈ aH ∩ bH. Then c = ah1 = bh2 for suitable h1, h2 ∈ H. Thus
b = ah1h

−1
2 = ak with k = h1h

−1
2 ∈ H, since H is a subgroup. So if

bh is an arbitrary element of bH, then bh = akh ∈ aH as well because
kh ∈ H also. This says that bH ⊆ aH, and aH ⊆ bH is shown in the
same way.

This has a very important consequence:

Theorem 2.16 (Lagrange). Let G be a finite group. Then the order
of any subgroup H divides |G|, and we have that |G| = |H|[G : H].

Here we denote by [G : H] the number of (distinct) cosets of H in
G. (This number is the same for left and right cosets, so we don’t need
to specify which type we are considering.) This is also called the index
of the subgroup H in G.

Proof. This is immediate from the preceding discussion: partition G
into (let’s say: left) cosets G = a1H ∪ . . . ∪ anH, and count elements
on both sides. Notice that n = [G : H], by the definition of the index,
and that |ajH| = |H| (why is that true?). �

Corollary 2.17. Let G be a finite group. Then a|G| = 1 for all a ∈ G,
and thus exp(G) is a divisor of |G|.

Proof. For any a ∈ G, we can consider the cyclic subgroup 〈a〉 ⊆ G. By
Lagrange’s Theorem, its order o(a) divides |G|, so a|G| = ao(a)n = 1. �

Exercise 2.34. Give an explicit argument for the final claim, on exp(G).

Exercise 2.35. Use Corollary 2.17 to give a new (and extremely short)
proof of Theorem 1.10. Hint: Recall that (Z×p , ·) is a group.
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Exercise 2.36. (a) Let G be a finite abelian group, and form the product
x = a1 . . . an of all elements of G. Show that x2 = 1.
(b) Prove Wilson’s Theorem: (p − 1)! ≡ −1 mod p for any prime p.
Suggestion: Use part (a) for inspiration. You will probably have to
show that ±1 are the only solutions of x2 ≡ 1 mod p, and for this, the
identity x2 − 1 = (x+ 1)(x− 1) should be useful.

Exercise 2.37. Let G be a finite group with subgroups K ⊆ H ⊆ G.
Show that then [G : K] = [G : H][H : K].

Exercise 2.38. Let H be a subgroup of G, with both G and H possibly
infinite now.
(a) Show that aH 7→ Ha−1 sets up a bijection between left and right
cosets.
(b) Conclude that if the number of left (say) cosets is finite, then so
is the number of right cosets, and these two numbers agree (so we can
still unambiguously define [G : H] in this situation).

Exercise 2.39. Let H1, H2 be subgroups of G. Show that H1 ∩H2 is a
subgroup, too, and the cosets satisfy a(H1 ∩H2) = aH1 ∩ aH2.

Exercise 2.40. Suppose that |G| = p is a prime. Show that G is a cyclic
group.

We know from our general discussion from Section 1.2 that partitions
are essentially the same thing as equivalence relations. Now we just
saw that a subgroup H ⊆ G produces a partition of G into cosets; in
fact, it produces two partitions because here we can work with left or
right cosets. What is the corresponding equivalence relation?

Proposition 2.18. Let H be a subgroup of G and partition G into left
cosets cH. Define an equivalence relation ∼ on G by declaring a, b ∈ G
equivalent if they lie in the same coset: a, b ∈ cH. Then a ∼ b if and
only if b−1a ∈ H.

Exercise 2.41. Prove Proposition 2.18. Also, formulate and prove a
version for right cosets.

2.5. Congruences. A congruence on a monoid or group (or any al-
gebraic structure, for that matter) is an equivalence relation that is
compatible with the algebraic structure. More specifically:

Definition 2.19. Let M be a monoid or a group. We call an equiv-
alence relation ≡ on M a congruence if a ≡ a′, b ≡ b′ implies that
ab ≡ a′b′.
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Recall that for any equivalence relation, we can form the new set
M = (M/ ≡) = {a : a ∈M} of equivalence classes; these were defined
as a = {b : b ≡ a}. If our equivalence relation is a congruence, then
M inherits a monoid structure from M in a natural way: we define
a binary operation on M by ab := ab. This is indeed well defined
because no matter which representatives a′ ∈ a, b′ ∈ b we choose, a′b′

will always be in the same equivalence class, so the right-hand side does
not depend on an arbitrary choice of a ∈ a, b ∈ b.

Next, observe that this operation is associative because

(ab)c = abc = (ab)c = a(bc) = abc = a(bc).

Similarly, 1 a = 1a = a and, in the same way, a 1 = a, so 1 ∈ M is a
neutral element. We call M the quotient monoid.

If M = G is a group, then G = G/ ≡ will be a group also, which we
(unsurprisingly) call the quotient group. We already know that G is a
monoid, so we only need to show that every a ∈ G is invertible, but
this is obvious because aa−1 = aa−1 = 1 and similarly a−1a = 1, so a
is indeed invertible, with inverse a−1 = a−1.

Recall that equivalence relations are the same thing as partitions,
so congruences can also be described in terms of the partitions they
induce. In the case of groups (and all other algebraic structures we are
going to discuss later on, but not for monoids), it actually suffices to
know the equivalence class of 1.

Basically, we are now reversing the steps that led us to Proposition
2.18. As we will see in a moment, congruences will lead us back to cosets
when we focus on the partition that is induced by the congruence, but
the subgroups that are involved will now have an additional property.
We need a definition:

Definition 2.20. A subgroup K of a group G is called normal if
aka−1 ∈ K for all a ∈ G, k ∈ K. We write K E G to indicate that K
is a normal subgroup of G.

Proposition 2.21. Let K be a subgroup of G. Then the following
statements are equivalent:
(a) K E G;
(b) aKa−1 ⊆ K for all a ∈ G;
(c) aKa−1 = K for all a ∈ G;
(d) aK = Ka for all a ∈ G

Here, we write aKa−1 = {aka−1 : k ∈ K}, and the cosets aK, Ka
are defined similarly and were used earlier.

Exercise 2.42. Prove Proposition 2.21.
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If G is abelian, then every subgroup is normal, but things are not so
clear in general groups.

Exercise 2.43. Let H be subgroup of G of index 2. Show that H is
normal.

Exercise 2.44. Consider the symmetric group S3, and let H ⊆ S3 be the
(cyclic) subgroup generated by the permutation π(1) = 2, π(2) = 1,
π(3) = 3.
(a) What is the order of π? List all elements of H = 〈π〉.
(b) Show that H is not normal in S3.

Exercise 2.45. Let ≡ be a congruence on a group G. Show that a ≡ b
precisely if ab−1 ≡ 1.

This already confirms what I announced above: congruences on
groups are completely determined as soon as we know what is (and
isn’t) equivalent to 1. It pays to elaborate some more on this:

Theorem 2.22. (a) Let ≡ be a congruence on a group G. Then K = 1
is a normal subgroup of G, and the equivalence class of a ∈ G is given
by the coset a = aK = Ka.

(b) Conversely, if K E G, then the relation ≡ defined as a ≡ b
precisely if ab−1 ∈ K is a congruence, and K = 1.

A very quick proof can be given if we introduce some additional
material that is of fundamental importance anyway.

Definition 2.23. Let ϕ : G→ G′ be a homomorphism. The kernel of
ϕ is defined as

ker(ϕ) = {a ∈ G : ϕ(a) = 1′}.

Proposition 2.24. Let ϕ : G → G′ be a homomorphism. Then
ker(ϕ) E G. Moreover, ϕ is injective precisely if ker(ϕ) = {1}.

Proof. Let’s first check that ker(ϕ) is a subgroup: if a, b ∈ ker(ϕ),
then ϕ(ab−1) = ϕ(a)ϕ(b)−1 = 1′1′−1 = 1′, so ab−1 ∈ ker(ϕ) as well, as
required.

To see that ker(ϕ) is normal, let k ∈ ker(ϕ), a ∈ G, and consider
ϕ(aka−1) = ϕ(a)1′ϕ(a)−1 = 1′, so aka−1 ∈ ker(ϕ), again as required.

Everything in the kernel gets mapped to the same image 1′, so
clearly ker(ϕ) cannot contain other elements (than 1) if ϕ is injec-
tive. Conversely, if ker(ϕ) = {1} and ϕ(a) = ϕ(b), then ϕ(ab−1) = 1′,
so ab−1 ∈ ker(ϕ) and hence a = b, that is, ϕ is injective. �

Exercise 2.46. Recall from Exercise 2.20 (or better yet, show it again)
that ϕ(G) is a subgroup of G′. Is this always a normal subgroup, too?
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Proposition 2.25. Let ≡ be a congruence on a group G. Then the
natural map (“quotient map”) G → G, a 7→ a is a surjective homo-
morphism.

Exercise 2.47. Prove this. (When you write it out, you should really
find that Proposition 2.25 just restates the definition of the group op-
eration on the quotient group.)

We are now ready for the

Proof of Theorem 2.22. (a) Let ϕ : G→ G, ϕ(a) = a be the homomor-
phism from Proposition 2.25, and define K = 1, as in the statement of
the Theorem. Observe that K = ker(ϕ). Indeed, a ∈ ker(ϕ) precisely
if a = 1, and this is equivalent to a ≡ 1 or a ∈ 1.

So K is indeed a normal subgroup, by Proposition 2.24. We already
saw in Exercise 2.45 that b ∈ a precisely if ba−1 ∈ 1 = K or b ∈ Ka.
Also, Ka = aK since K is normal.

(b) We first check that ≡, defined by a ≡ b precisely if ab−1 ∈ K
or, equivalently, a ∈ Kb is an equivalence relation. In fact, we already
know this from the previous section because the cosets Kg, g ∈ G
form a partition and since, trivially, b ∈ Kb, we can now say that a ≡ b
happens precisely if a, b lie in a common set of this partition (this part
does not use that K is normal, it works for arbitrary subgroups).

Now let’s check that ≡ is a congruence. So let a, a′, b, b′ ∈ G, with
a ≡ a′, b ≡ b′. In other words, aa′−1, bb′−1 ∈ K. We must check that
then ab(a′b′)−1 ∈ K. We can write

ab(a′b′)−1 = abb′−1a′−1 = a[bb′−1]a−1[aa′−1],

and the products in square brackets are in K, by assumption, so
a[. . .]a−1 ∈ K as well, by the normality of K, and thus we are look-
ing at a product of two elements of K, which is in K because K is a
subgroup.

The final claim is clear from observing that a ≡ 1 precisely if a1−1 =
a ∈ K. �

Exercise 2.48. Give an alternative direct proof of part (a) of the The-
orem that does not make use of homomorphisms.

Exercise 2.49. Show that congruences on monoids can not necessarily
be reconstructed from 1, the equivalence class of the neutral element.
Suggestion: Find two distinct congruences on (N0,+) with 0 = {0}.

If K E G, we also write G/K for the quotient group. As we just
saw, its elements are the cosets aK, a ∈ G; it doesn’t matter which
type of coset is used here because the fact that K is normal implies
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that aK = Ka. Two cosets are multiplied as follows aK · bK = (ab)K,
the neutral element of G/K is 1K = K, and (aK)−1 = a−1K.

There is an alternative interpretation of the multiplication in the
quotient group G/K. We can, more generally, introduce a product of
arbitrary subsets A,B ⊆ G of a group G in a natural way, by setting

(2.4) AB = {ab : a ∈ A, b ∈ B}.
It is easy to see that this product is associative: this property is just
inherited from G. Or, rephrasing this slightly (and adding the obser-
vation that there is a neutral element):

Exercise 2.50. Let M be a monoid (in particular, M = G could be a
group). Show that the power set P (M) with the product (2.4) is a
monoid, too.

Observe also that if the first set has one element and the second is
a subgroup, then the set product {a}H = {ah : h ∈ H} recovers the
coset; we will continue to denote this by aH.

Exercise 2.51. Show that a subset H ⊆ G, H 6= ∅, is a subgroup
precisely if: (1) HH ⊆ H; (2) H−1 ⊆ H, where H−1 = {h−1 : h ∈ H}.
Show also that in this case, HH = H.

Now let’s return to the quotient group G/K, with K E G. What
happens if we multiply two cosets aK, bK as sets? By associativity of
the set product, Exercise 2.51, and Proposition 2.21(d), we have that

(aK)(bK) = a(Kb)K = a(bK)K = (ab)(KK) = abK,

so we obtain the satisfying conclusion that the group operation in G/K
can be viewed as set multiplication of cosets.

Exercise 2.52. Let G = {(a, b) : a, b ∈ R, a 6= 0}, with the operation
(a, b)(c, d) = (ac, ad+ b).
(a) Show that G is a group.
(b) Let K = {(1, b) : b ∈ R}. Show that K E G.
(c) What is G/K? (Find a familiar group that is isomorphic to G/K.)

Exercise 2.53. Let H,K E G. Show that then H ∩K and HK are also
normal subgroups of G.

Exercise 2.54. Suppose that K E G, [G : K] = n. Show that then
an ∈ K for all a ∈ G.

2.6. Permutations. In this section, we study the elements of Sn in
more detail. A very useful tool is the cycle decomposition of a permu-
tation. Given π ∈ Sn, pick an integer k1 and keep track of how this gets
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moved around by π: So apply π to k1, and let’s call this π(k1) =: k2.
Then look at π(k2) =: k3, then at π(k3) =: k4 and so on, until we return
to one of these integers. In fact, this cycle can only close at k1; other-
wise, we would obtain a contradiction to the injectivity of π. Let’s say
π(kr) = k1. This permutation that maps kj to kj+1 for j = 1, . . . , r− 1
and kr back to k1 and fixes the other integers from {1, 2, . . . , n} (if any)
is called a cycle and is denoted by (k1k2 . . . kr). (Note that this cycle
may or may not agree with the original permutation π.) For example,
if n = 4, then (241) is the permutation π that sends π(2) = 4, π(4) = 1,
π(1) = 2, π(3) = 3. Notice also that (241) = (412) = (124), and of
course this observation works for arbitrary cycles.

Let’s return to the original permutation π ∈ Sn. We have extracted
a cycle from this, but there may be others integers left that are not part
of this cycle. If so, then pick one of these and form another cycle. Note
that the integers in this new cycle will be distinct from the ones from
the first cycle because everything that gets mapped to an integer from
the first cycle automatically becomes part of that cycle. If {1, 2, . . . , n}
is still not exhausted by these first two cycles, pick one the integers that
is left and form a third cycle. Continue in this way until every integer
belongs to a unique cycle. We have proved most of:

Proposition 2.26. Every permutation π ∈ Sn can be decomposed into
disjoint cycles:

(2.5) π = (k1 . . . kr)(m1 . . .ms) . . . (p1 . . . pt)

This representation is unique except for the order in which the cycles
appear (and we know that we may cyclically permute within each cycle).

The product of cycles on the right-hand side is taken in Sn; in other
words, the individual cycles are composed as maps. The cycles are
called disjoint here because every integers belongs to precisely one cy-
cle. If there are k with π(k) = k, then any such integer will contribute
a cycle (k) of length one. These could of course be dropped from (2.5).

Exercise 2.55. Complete the proof of the Proposition. In particular,
show that two disjoint cycles commute in Sn.

Exercise 2.56. Let π ∈ S4 be the permutation π = (24)(413)(123).
Find π(j) for j = 1, 2, 3, 4, and give the cycle decomposition of π.

Exercise 2.57. Let r1, . . . , rm be the lengths of the cycles in the cycle
decomposition of π ∈ Sn. Show that o(π) = lcm(r1, . . . , rm). Then find
exp(S6).

A transposition is a cycle (jk) of length 2. I claim that Sn as a group
is generated by the transpositions. To show this, it is enough to verify
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that any cycle is in the subgroup generated by the (jk), 1 ≤ j, k ≤ n,
and this is immediate from the formula

(2.6) (k1k2 . . . kr) = (k1kr)(k1kr−1) . . . (k1k3)(k1k2).

Exercise 2.58. Prove (2.6). (Don’t forget that when composing maps,
the ones on the right act first.)

By applying (2.6) to all cycles from the cycle decomposition, we
obtain a representation of an arbitrary π ∈ Sn as a product of trans-
positions. Unlike the cycle decomposition, this representation will not
be unique. For example, (123) = (13)(12) = (12)(23). Moreover, the
transpositions are not disjoint, in general, and thus may not commute
(what is (12)(13)?). However, what is determined by the permutation
is the parity of the number of transpositions.

Theorem 2.27. Let π ∈ Sn be a permutation. Then either all repre-
sentations of π as a product of transpositions have an odd number of
factors, or they all have an even number of factors.

We call π an odd or even permutation, according to which alternative
holds. We also define the sign of π as σ(π) = 1 if π is even and
σ(π) = −1 if π is odd.

Exercise 2.59. Show (with the help of Theorem 2.27, to be proved in
a moment) that σ : Sn → {−1, 1} is a homomorphism; here, the group
operation on ±1 is multiplication.

Definition 2.28. The set of even permutations in Sn is called the
alternating group and is denoted by An.

Exercise 2.60. Show (directly) that An E Sn. Then give a different
argument with the help of Exercise 2.59.

Proof of Theorem 2.27. Our key tool will be the number N(π) of trans-
positions in the specific representation that we constructed above. More
precisely, if the cycle decomposition of π has cycles of lengths r1, . . . , rm,
then we set N(π) =

∑
(rj−1); this is motivated by (2.6), which writes

a cycle of length r as a product of r − 1 transpositions.
I now claim that for any π ∈ Sn and any transposition (jk), we have

that

(2.7) N((jk)π) = N(π) + 1 or N((jk)π) = N(π)− 1

(which case we are in will depend on the details of the situation).
This will give the Theorem because if π is written as a product of
T transpositions in an arbitrary way, then I can successively multiply
from the left by these transpositions (which are their own inverses), and
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I will eventually reach the identity element 1 ∈ Sn. Clearly N(1) = 0,
and since I got there in T steps, starting from π, and each individual
step changes the parity of N , it follows that N(π) has the same parity
as T . Since I considered an arbitrary representation of π as a product
of transpositions, it follows that these all have the same parity as N(π),
as claimed.

It remains to establish (2.7). This argument will depend on the
identity

(2.8) (jk)(jx1 . . . xsky1 . . . yt) = (jx1 . . . xs)(ky1 . . . yt).

Exercise 2.61. Verify (2.8).

I will now show that, more specifically, we are in the first case in
(2.7) if j, k belong to disjoint cycles of π, and we are in the second
case otherwise. Let’s do the second case first: suppose that the cycle
decomposition of π reads

π = (jx1 . . . xsky1 . . . yt) . . . ,

where . . . indicates the other cycles (if any), which will act as spectators
here. (Why can I put j into the first slot of this cycle?) Now (2.8) gives
that (jk)π = (jx1 . . . xs)(ky1 . . . yt) . . ., so the net effect of multiplying
by (jk) was to split this large cycle with j, k in it into two smaller
cycles. So if we now work out N((jk)π) and compare it with N(π), we
see that the contribution s+ t+ 2− 1 = s+ t+ 1 to N(π) changes to
(s+ 1− 1) + (t+ 1− 1) = s+ t, and everything else in the sum defining
N stays the same. Thus N((jk)π) = N(π)− 1, as claimed. I leave the
other case to the reader. �

Exercise 2.62. Finish the proof by discussing the other case (j, k in
distinct cycles) in the same style.

Exercise 2.63. (a) Show that Sn is generated by (12), (13), . . . , (1n).
(b) Show that Sn is generated by (123 . . . n), (12).
(c) Show that Sn is not generated by a single element if n ≥ 3.

Exercise 2.64. (a) Show that every 3 cycle (jkm) is even.
(b) Show that An is generated by the 3 cycles.


